Radium bromide

Last updated
Radium bromide [1] [2]
Ra bromid.jpg
Radium bromide
Names
IUPAC name
radium bromide
Other names
radium bromide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.066 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 233-086-5
UNII
  • InChI=1S/2BrH.Ra/h2*1H;/q;;+2/p-2 Yes check.svgY
    Key: GIKWXTHTIQCTIH-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/2BrH.Ra/h2*1H;/q;;+2/p-2
    Key: GIKWXTHTIQCTIH-NUQVWONBAJ
  • Br[Ra]Br
Properties
RaBr2
Molar mass 385.782 g/mol
Appearancewhite orthorhombic crystals
Density 5.79 g/cm3
Melting point 728 °C (1,342 °F; 1,001 K)
Boiling point 900 °C (1,650 °F; 1,170 K) sublimes
70.6 g/100 g at 20°C
Related compounds
Other anions
Radium chloride
Other cations
Beryllium bromide
Magnesium bromide
Calcium bromide
Strontium bromide
Barium bromide
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Radioactive, highly toxic, explosive, dangerous for the environment
GHS labelling:
GHS-pictogram-explos.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazard RA: Radioactive. E.g. plutonium
4
0
3
Radiation warning symbol 3.svg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Radium bromide is the bromide salt of radium, with the formula RaBr2. It is produced during the process of separating radium from uranium ore. This inorganic compound was discovered by Pierre and Marie Curie in 1898, and the discovery sparked a huge interest in radiochemistry and radiotherapy. Since elemental radium oxidizes readily in air and water, radium salts are the preferred chemical form of radium to work with. [3] Even though it is more stable than elemental radium, radium bromide is still extremely toxic, and can explode under certain conditions. [4]

Contents

History

After the Curies discovered radium (in the form of radium chloride) in 1898, scientists began to isolate radium on an industrial scale, with the intent of using it for radiotherapy treatments. Radium salts, including radium bromide, were most often used by placing the chemical in a tube that was then passed over or inserted into diseased tissue in the body. Many of the first scientists to try to determine radium's uses were affected by their exposure to the radioactive material. Pierre Curie went so far as to self-inflict a severe chemical skin reaction by applying a radium source directly to his forearm, which ultimately created a skin lesion. [5] All types of therapeutic tests were performed for different skin diseases including eczema, lichen and psoriasis. Later, it was hypothesized that radium could be used to treat cancerous diseases.

However, during this time frame, radium also gained popularity among pseudoscientific "health remedy" industries, which promoted radium as an essential element that could "heal" and "reinvigorate" cells in the human body and remove poisonous substances. As a result, radium gained popularity as a "health trend" in the 1920s and radium salts were added to food, drinks, clothing, toys, and even toothpaste. [6] Furthermore, many respectable journals and newspapers in the early 1900s published statements claiming that radium posed no health hazard.

The main problem with the growth of interest in radium was the lack of radium on earth itself. In 1913, it was reported that the Radium Institute had four grams of radium total, which at the time was more than half the world supply. [6] Numerous countries and institutions across the world set out to extract as much radium as possible, a time-consuming and expensive task. It was reported in Science magazine in 1919 that the United States had produced approximately 55 grams of radium since 1913, which was also more than half the radium produced in the world at the time. [7] A principal source for radium is pitchblende, which holds a total of 257 mg of radium per ton of U3O8. [3] With so little product recovered from such a large amount of material, it was difficult to extract a large quantity of radium. This was the reason radium bromide became one of the most expensive materials on earth. In 1921, it was stated in Time magazine that one ton of radium cost 17,000,000,000 Euros, whereas one ton of gold cost 208,000 Euros and one ton of diamond cost 400,000,000 Euros. [6]

Radium bromide was also found to induce phosphorescence at normal temperatures. [8] This led to the US army manufacturing and supplying luminous watches and gun sights to soldiers. It also allowed for the invention of the spinthariscope, which soon became a popular household item. [9]

Properties

Radium bromide is a luminous salt that causes the air surrounding it, even when encased in a tube, to glow a brilliant green and demonstrate all bands of the nitrogen spectrum. It is possible that the effect of the alpha radiation on the nitrogen in the air causes this luminescence. Radium bromide is highly reactive and crystals can sometimes explode, especially if heated. Helium gas evolved from alpha particles can accumulate within the crystals, which can cause them to weaken and rupture.

Radium bromide will crystallize when separated from aqueous solution. It forms a dihydrate, very similar to barium bromide. [4]

Production

Radium is obtained from uranium or pitchblende ores by the "Curie method", which involves two major stages. In the first stage the ore is treated with sulfuric acid dissolves many components. The residue contains, barium, radium, and lead sulfates. The mixture will then be treated with sodium chloride and sodium carbonate to remove the lead. The second stage involves separation of the barium from the radium. [3] [4]

Radium bromide can be obtained from radium chloride by reaction with a stream of hydrogen bromide. [4]

Hazards

Radium bromide, like all radium compounds, is highly radioactive and very toxic. Due to its chemical similarity to calcium, radium tends to accumulate in the bones, where it irradiates the bone marrow and can cause anemia, leukemia, sarcoma, bone cancer, genetic defects, infertility, ulcers, and necrosis. Symptoms of poisoning can take years to develop, by which time it is usually too late for any effective medical treatment. Radium bromide also poses a severe environmental hazard, amplified due to its high solubility in water, and it can bioaccumulate and cause long-lasting damage to organisms.[ citation needed ]

Radium bromide is highly reactive, and crystals can explode if violently shocked or heated. This is, in part, due to self-damage of the crystals by alpha radiation, which weakens the lattice structure.[ dubious ]

Uses

Radium and radium salts were commonly used for treating cancer; however, these treatments have been mostly phased out in favor of less toxic chemicals such as technetium or strontium-89. [6] Radium bromide was also used in luminous paint on watches, but its use was ultimately phased out in the 1960-1970s in favor of less dangerous chemicals like promethium and tritium.

See also

Related Research Articles

<span class="mw-page-title-main">Actinium</span> Chemical element, symbol Ac and atomic number 89

Actinium is a chemical element; it has symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name emanium; the element got its name by being wrongly identified with a substance André-Louis Debierne found in 1899 and called actinium. Actinium gave the name to the actinide series, a set of 15 elements between actinium and lawrencium in the periodic table. Together with polonium, radium, and radon, actinium was one of the first non-primordial radioactive elements to be isolated.

<span class="mw-page-title-main">Chalcogen</span> Group of chemical elements

The chalcogens are the chemical elements in group 6 of the periodic table. This group is also known as the oxygen family. Group 6 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

<span class="mw-page-title-main">Halogen</span> Group of chemical elements

The halogens are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.

<span class="mw-page-title-main">Polonium</span> Chemical element, symbol Po and atomic number 84

Polonium is a chemical element; it has symbol Po and atomic number 84. A rare and highly radioactive metal with no stable isotopes, polonium is a chalcogen and chemically similar to selenium and tellurium, though its metallic character resembles that of its horizontal neighbors in the periodic table: thallium, lead, and bismuth. Due to the short half-life of all its isotopes, its natural occurrence is limited to tiny traces of the fleeting polonium-210 in uranium ores, as it is the penultimate daughter of natural uranium-238. Though longer-lived isotopes exist, such as the 124 years half-life of polonium-209, they are much more difficult to produce. Today, polonium is usually produced in milligram quantities by the neutron irradiation of bismuth. Due to its intense radioactivity, which results in the radiolysis of chemical bonds and radioactive self-heating, its chemistry has mostly been investigated on the trace scale only.

<span class="mw-page-title-main">Radium</span> Chemical element, symbol Ra and atomic number 88

Radium is a chemical element; it has symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years. When radium decays, it emits ionizing radiation as a by-product, which can excite fluorescent chemicals and cause radioluminescence.

<span class="mw-page-title-main">Alkaline earth metal</span> Group of chemical elements

The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure.

<span class="mw-page-title-main">Nuclear chemistry</span> Branch of chemistry dealing with radioactivity, transmutation and other nuclear processes

Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties.

<span class="mw-page-title-main">Radium chloride</span> Chemical compound

Radium chloride is an inorganic compound with the chemical formula RaCl2. It is a radium salt of hydrogen chloride. It was the first radium compound isolated in a pure state. Marie Curie and André-Louis Debierne used it in their original separation of radium from barium. The first preparation of radium metal was by the electrolysis of a solution of this salt using a mercury cathode.

<span class="mw-page-title-main">Barium sulfate</span> Inorganic chemical compound

Barium sulfate (or sulphate) is the inorganic compound with the chemical formula BaSO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs as the mineral barite, which is the main commercial source of barium and materials prepared from it. Its opaque white appearance and its high density are exploited in its main applications.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

<span class="mw-page-title-main">Barium iodide</span> Chemical compound

Barium iodide is an inorganic compound with the formula BaI2. The compound exists as an anhydrous and a hydrate (BaI2(H2O)2), both of which are white solids. When heated, hydrated barium iodide converts to the anhydrous salt. The hydrated form is freely soluble in water, ethanol, and acetone.

Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the environment, such as uranium, thorium and potassium and any of their decay products, such as radium and radon. Produced water discharges and spills are a good example of entering NORMs into the surrounding environment.

<span class="mw-page-title-main">Barium bromide</span> Chemical compound

Barium bromide is the chemical compound with the formula BaBr2. It is ionic and hygroscopic in nature.

<span class="mw-page-title-main">Friedrich Oskar Giesel</span> German organic chemist (1852–1927)

Friedrich Oskar Giesel was a German organic chemist. During his work in a quinine factory in the late 1890s, he started to work on the at-that-time-new field of radiochemistry and started the production of radium. In the period between 1902 and 1904, he was able to isolate a new element emanium. In a now controversially reviewed process, it was stated that emanium is identical to actinium, which was discovered by André-Louis Debierne in 1899.

The history of radiation therapy or radiotherapy can be traced back to experiments made soon after the discovery of X-rays (1895), when it was shown that exposure to radiation produced cutaneous burns. Influenced by electrotherapy and escharotics—the medical application of caustic substances—doctors began using radiation to treat growths and lesions produced by diseases such as lupus, basal cell carcinoma, and epithelioma. Radiation was generally believed to have bactericidal properties, so when radium was discovered, in addition to treatments similar to those used with x-rays, it was also used as an additive to medical treatments for diseases such as tuberculosis where there were resistant bacilli.

Emile Armet de Lisle (1853–1928) was a French industrialist and chemist who helped develop the French radium industry in the early 20th century. Around the turn of the century, Armet de Lisle began to take notice of a growing market for radium products in France. Seeking to take advantage of this opportunity and leave his own mark on the family business, de Lisle established a new factory, just outside Paris, devoted to the production of radium products in 1904. This was the first radium factory in the world.

<span class="mw-page-title-main">Radium sulfate</span> Chemical compound

Radium sulfate (or radium sulphate) is an inorganic compound with the formula RaSO4 and an average molecular mass of 322.088 g/mol. This white salt is the least soluble of all known sulfate salts. It was formerly used in radiotherapy and smoke detectors, but this has been phased out in favor of less hazardous alternatives.

Radium carbonate is a compound of radium, carbon, and oxygen. This salt is a highly radioactive, amorphous, white powder that has potential applications in medicine. It is notable for forming disordered crystals at room temperature and for being approximately 10 times more soluble than the corresponding barium carbonate - witherite. Radium carbonate is one of a few radium compounds which has significantly different properties from corresponding barium compounds. Moreover, radium is the only alkaline-earth metal which forms disordered crystals in its carbonate phase. Even though radium carbonate has very low solubility in water, it is soluble in dilute mineral acids and concentrated ammonium carbonate.

<span class="mw-page-title-main">Vitaly Khlopin</span> Russian chemist (1890–1950)

Vitaly Grigorievich Khlopin was a Russian and Soviet scientist- radiochemist, professor, academician of the USSR Academy of Sciences (1939), Hero of Socialist Labour (1949), and director of the Radium Institute of the USSR Academy of Sciences (1939-1950). He was one of the founders of Soviet radiochemistry and radium industry, received the first domestic radium preparations (1921), one of the founders of the Radium Institute and leading participants in the atomic project and founder of the school of Soviet radiochemists.

Radium compounds are compounds containing the element radium (Ra). Due to radium's radioactivity, not many compounds have been well characterized. Solid radium compounds are white as radium ions provide no specific coloring, but they gradually turn yellow and then dark over time due to self-radiolysis from radium's alpha decay. Insoluble radium compounds coprecipitate with all barium, most strontium, and most lead compounds.

References

  1. Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, FL: CRC Press. pp. 4–78. ISBN   0-8493-0594-2.
  2. Chemical Compounds (Inorganic); B-Table, Record No. 2630. International Critical Tables of Numerical Data, Physics, Chemistry and Technology (1st Electronic Edition). 2000
  3. 1 2 3 Babcock, A.B., Jr. Survey of Processes for Radium Recovery from Pitchblende Ores. AEC Research and Development Report. 23 Feb 1950. No. NYO—112
  4. 1 2 3 4 Kirby, H.W; Salutsky, Murrell L. The Radiochemistry of Radium. Energy Citations DatabaseDec 1964.
  5. Dutreix, Jean; Pierquin, Bernard; Tubiana, Maurice. The Hazy Dawn of Brachytherapy. Radiotherapy and Oncology (49) 1998 223-232
  6. 1 2 3 4 Harvie, David I. The Radium Century. Endeavor1999 Vol. 23, Issue 3: 100-105
  7. Voil, Charles H. Radium Production. Science17 March 1919 Vol. 49, No 1262: 227-228
  8. 100 and 50 years ago. Nature24 July 2003 Vol. 424, Issue 6927: 381
  9. Schwarcz, Joe. A Dazzling display in a little jar. The Gazette: Saturday Extra; The Right Chemistry pg B5