Rail transport modelling

Last updated
A Japanese H0e scale model railroad H0e layout2.png
A Japanese H0e scale model railroad
One of the smallest (Z scale, 1:220) placed on the buffer bar of one of the larger (live steam, 1:8) model locomotives LSZcomparison.jpg
One of the smallest (Z scale, 1:220) placed on the buffer bar of one of the larger (live steam, 1:8) model locomotives
HO scale (1:87) model of a North American center cab switcher shown with a pencil for size HO Scale Bachmann 44-tonner.JPG
HO scale (1:87) model of a North American center cab switcher shown with a pencil for size
Z scale (1:220) scene of a 2-6-0 steam locomotive being turned. A scratch-built Russell snow plow is parked on a stub (Val Ease Central Railroad). VECRR-VEEturntable.jpg
Z scale (1:220) scene of a 2-6-0 steam locomotive being turned. A scratch-built Russell snow plow is parked on a stub (Val Ease Central Railroad).

Railway modelling (UK, Australia, New Zealand, and Ireland) or model railroading (US and Canada) is a hobby in which rail transport systems are modelled at a reduced scale.

Contents

The scale models include locomotives, rolling stock, streetcars, tracks, signalling, cranes, and landscapes including: countryside, roads, bridges, buildings, vehicles, harbors, urban landscape, model figures, lights, and features such as rivers, hills, tunnels, and canyons.

The earliest model railways were the 'carpet railways' in the 1840s. The first documented model railway was the Railway of the Prince Imperial (French: Chemin de fer du Prince Impérial) built in 1859 by Emperor Napoleon III for his then 3-year-old son, also Napoleon, in the grounds of the Château de Saint-Cloud in Paris. It was powered by clockwork and ran in a figure-of-eight. [1] Electric trains appeared around the start of the 20th century, but these were crude likenesses. Model trains today are more realistic, in addition to being much more technologically advanced. Today modellers create model railway layouts, often recreating real locations and periods throughout history.

The world's oldest working model railway is a model designed to train signalmen on the Lancashire and Yorkshire Railway. It is located in the National Railway Museum, York, England and dates back to 1912. It remained in use until 1995. The model was built as a training exercise by apprentices of the company's Horwich Works and supplied with rolling stock by Bassett-Lowke. [2]

General description

Involvement ranges from possession of a train set to spending hours and large sums of money on a large and exacting model of a railroad and the scenery through which it passes, called a "layout". Hobbyists, called "railway modellers" or "model railroaders", may maintain models large enough to ride (see Live steam, Ridable miniature railway and Backyard railroad ).

Modellers may collect model trains, building a landscape for the trains to pass through. They may also operate their own railroad in miniature. For some modellers, the goal of building a layout is to eventually run it as if it were a real railroad (if the layout is based on the fancy of the builder) or as the real railroad did (if the layout is based on a prototype). If modellers choose to model a prototype, they may reproduce track-by-track reproductions of the real railroad in miniature, often using prototype track diagrams and historic maps.

Layouts vary from a circle or oval of track to realistic reproductions of real places modelled to scale. Probably the largest model landscape in the UK is in the Pendon Museum in Oxfordshire, UK, where an EM gauge (same 1:76.2 scale as 00 but with more accurate track gauge) model of the Vale of White Horse in the 1930s is under construction. The museum also houses one of the earliest scenic models – the Madder Valley layout built by John Ahern. This was built in the late 1930s to late 1950s and brought in realistic modelling, receiving coverage on both sides of the Atlantic in the magazines Model Railway News and Model Railroader . Bekonscot in Buckinghamshire is the oldest model village and includes a model railway, dating from the 1930s. The world's largest model railroad in H0 scale is the Miniatur Wunderland in Hamburg, Germany. The largest live steam layout, with 25 miles (40 km) of track is Train Mountain in Chiloquin, Oregon, U.S. [3] Operations form an important aspect of rail transport modelling with many layouts being dedicated to emulating the operational aspects of a working railway. These layouts can become extremely complex with multiple routes, movement patterns and timetabled operation. The British outline model railway of Banbury Connections is one of the world's most complicated model railways. [4]

Model railroad clubs exist where enthusiasts meet. Clubs often display models for the public. One specialist branch concentrates on larger scales and gauges, commonly using track gauges from 3.5 to 7.5 inches (89 to 191 mm). Models in these scales are usually hand-built and powered by live steam, or diesel-hydraulic, and the engines are often powerful enough to haul dozens of human passengers.

The Tech Model Railroad Club (TMRC) at MIT in the 1950s pioneered automatic control of track-switching by using telephone relays.

The oldest society is 'The Model Railway Club' [5] (established 1910), near Kings Cross, London, UK. As well as building model railways, it has 5,000 books and periodicals. Similarly, 'The Historical Model Railway Society' [6] at Butterley, near Ripley, Derbyshire specialises in historical matters and has archives available to members and non-members.

Scales and gauges

A 242A1 locomotive and standard gauge track at some model railway scales Comparison of model railway scales.svg
A 242A1 locomotive and standard gauge track at some model railway scales

The words scale and gauge seem at first interchangeable but their meanings are different. Scale is the model's measurement as a proportion to the original, while gauge is the measurement between the rails.

The size of engines depends on the scale and can vary from 700 mm (27.6 in) tall for the largest rideable live steam scales such as 1:4, down to matchbox size for the smallest: Z-scale (1:220) or T scale (1:450). A typical HO (1:87) engine is 50 mm (1.97 in) tall, and 100 to 300 mm (3.94 to 11.81 in) long. The most popular scales are: G scale, Gauge 1, O scale, S scale, HO scale (in Britain, the similar OO), TT scale, and N scale (1:160 in the United States, but 1:148 in the UK). HO and OO are the most popular. Popular narrow-gauge scales include Sn3, HOn3 and Nn3, which are the same in scale as S, HO and N except with a narrower spacing between the tracks (in these examples, a scale 3 ft (914 mm) instead of the 4 ft 8+12 in (1,435 mm) standard gauge).

The largest common scale is 1:8, with 1:4 sometimes used for park rides. G scale (Garden, 1:24 scale) is most popular for backyard modelling. It is easier to fit a G scale model into a garden and keep scenery proportional to the trains. Gauge 1 and Gauge 3 are also popular for gardens. O, S, HO, and N scale are more often used indoors. [7] [8]

ScaleRatio
T1:450
ZZ1:300
Z1:220
N1:160
2mm1:152
TT1:120
3mm1:101
HO1:87
OO1:76.2
S1:64
O1:48
11:32
G1:22.5

At first, model railways were not to scale. Aided by trade associations such as the National Model Railroad Association (NMRA) and Normen Europäischer Modellbahnen (NEM), manufacturers and hobbyists soon arrived at de facto standards for interchangeability, such as gauge, but trains were only a rough approximation to the real thing. Official scales for the gauges were drawn up but not at first rigidly followed and not necessarily correctly proportioned for the gauge chosen. 0 (zero) gauge trains, for instance, operate on track too widely spaced in the United States as the scale is accepted as 1:48 whereas in Britain 0 gauge uses a ratio of 43.5:1 or 7 mm/1 foot and the gauge is near to correct. British OO standards operate on track significantly too narrow. The 4 mm/1 foot scale on a 16.5 mm (0.65 in) gauge corresponds to a track gauge of 4 ft 1+12 in (1,257 mm), 7 inches or 178 millimetres (undersized). 16.5 mm (0.65 in) gauge corresponds to 4 ft 8+12 in (1,435 mm) standard gauge in H0 (half-0) 3.5 mm/1 foot or 1:87.1. This arose due to British locomotives and rolling stock being smaller than those found elsewhere, leading to an increase in scale to enable H0 scale mechanisms to be used. Most commercial scales have standards that include wheel flanges that are too deep, wheel treads that are too wide, and rail tracks that are too large. In H0 scale, the rail heights are codes 100, 87, 83, 70, 55, 53, and 40 -- the height in thousandths of an inch from base to railhead (so code 100 is a tenth of an inch and represents 156-pound rail).

Later, modellers became dissatisfied with inaccuracies and developed standards in which everything is correctly scaled. These are used by modellers but have not spread to mass-production because the inaccuracies and overscale properties of the commercial scales ensure reliable operation and allow for shortcuts necessary for cost control. The finescale standards include the UK's P4, and the even finer S4, which uses track dimensions scaled from the prototype. This 4 mm:1 ft modelling uses wheels 2 mm (0.079 in) or less wide running on track with a gauge of 18.83 mm (0.741 in). Check-rail and wing-rail clearances are similarly accurate.

A compromise of P4 and OO is "EM" which uses a gauge of 18.2 mm (0.717 in) with more generous tolerances than P4 for check clearances. It gives a better appearance than OO though pointwork is not as close to reality as P4. It suits many where time and improved appearance are important. There is a small following of finescale OO which uses the same 16.5mm gauge as OO, but with the finer scale wheels and smaller clearances as used with EM- it is essentially 'EM-minus-1.7mm.'

Modules

Many groups build modules, which are sections of layouts, and can be joined together to form a larger layout, for meetings or for special occasions. For each kind of module system, there is an interface standard, so that modules made by different participants may be connected, even if they have never been connected before. Many of these module types are listed in the Layout standards organizations section of this article.

Couplers and connectors

In addition to different scales, there are also different types of couplers for connecting cars, which are not compatible with each other.

In HO, the Americans standardized on horn-hook, or X2F couplers. Horn hook couplers have largely given way to a design known as a working knuckle coupler which was popularized by the Kadee Quality Products Co., and which has subsequently been emulated by a number of other manufactures in recent years. Working knuckle couplers are a closer approximation to the "automatic" couplers used on the prototype there and elsewhere. Also in HO, the European manufacturers have standardized, but on a coupler mount, not a coupler: many varieties of coupler can be plugged in (and out) of the NEM coupler box. None of the popular couplers has any resemblance to the prototype three-link chains generally used on the continent.

For British modellers, whose most popular scale is OO, the normal coupler is a tension-lock coupler, which, again has no pretence of replicating the usual prototype three-link chain couplers. Bachmann and more recently Hornby have begun to offer models fitted with NEM coupler pockets. This theoretically enables modellers of British railways to substitute any other NEM362 coupler, though many Bachmann models place the coupler pocket at the wrong height. A fairly common alternative is to use representations of chain couplings as found on the prototype, though these require large radius curves to be used to avoid derailments.

Other scales have similar ranges of non-compatible couplers available. In all scales couplers can be exchanged, with varying degrees of difficulty.

Landscaping

A simple H0 (1:87) scale model railroad, consisting of three interconnected modules, each 70 x 100 cm in size. It has two concentric ovals of track and a few switches to sidetracks. It makes no pretension of being a copy of "real life". Using low-cost landscaping parts, house kits and rolling stock, it was built for a total of only a few hundred dollars. SimpleH0.JPG
A simple H0 (1:87) scale model railroad, consisting of three interconnected modules, each 70 x 100 cm in size. It has two concentric ovals of track and a few switches to sidetracks. It makes no pretension of being a copy of "real life". Using low-cost landscaping parts, house kits and rolling stock, it was built for a total of only a few hundred dollars.
A H0e scale layout, 47 cm x 32 cm (18.5 in x 12.6 in) in size H0e layout.png
A H0e scale layout, 47 cm × 32 cm (18.5 in × 12.6 in) in size
The landscape in this N scale town includes weathered buildings and tall uncut grass. Virginia Farmlands Rwy 2 SW8 @ Doorstown 6-17-2007.JPG
The landscape in this N scale town includes weathered buildings and tall uncut grass.

Some modellers pay attention to landscaping their layout, creating a fantasy world or modelling an actual location, often historic. Landscaping is termed "scenery building" or "scenicking".

Constructing scenery involves preparing a sub-terrain using a wide variety of building materials, including (but not limited to) screen wire, a lattice of cardboard strips, or carved stacks of expanded polystyrene (styrofoam) sheets. A scenery base is applied over the sub-terrain; typical base include casting plaster, plaster of Paris, hybrid paper-pulp (papier-mâché) or a lightweight foam/fiberglass/bubblewrap composite as in Geodesic Foam Scenery. [9]

The scenery base is covered with substitutes for ground cover, which may be Static Grass or scatter. Scatter or flock is a substance used in the building of dioramas and model railways to simulate the effect of grass, poppies, fireweed, track ballast and other scenic ground cover. Scatter used to simulate track ballast is usually fine-grained ground granite. Scatter which simulates coloured grass is usually tinted sawdust, wood chips or ground foam. Foam or natural lichen or commercial scatter materials can be used to simulate shrubbery. An alternative to scatter, for grass, is static grass which uses static electricity to make its simulated grass actually stand up.

Buildings and structures can be purchased as kits, or built from cardboard, balsa wood, basswood, other soft woods, paper, or polystyrene or other plastic. Trees can be fabricated from materials such as Western sagebrush, candytuft, and caspia, to which adhesive and model foliage are applied; or they can be bought ready-made from specialist manufacturers. Water can be simulated using polyester casting resin, polyurethane, or rippled glass. Rocks can be cast in plaster or in plastic with a foam backing. Castings can be painted with stains to give colouring and shadows.

Weathering

Weathering refers to making a model look used and exposed to weather by simulating dirt and wear on real vehicles, structures and equipment. Most models come out of the box looking new, because unweathered finishes are easier to produce. Also, the wear a freight car or building undergoes depends not only on age but where it is used. Rail cars in cities accumulate grime from building and automobile exhaust and graffiti, while cars in deserts may be subjected to sandstorms which etch or strip paint. A model that is weathered would not fit as many layouts as a pristine model which can be weathered by its purchaser.

There are many weather techniques that include, but are not limited to, painting (by either drybrushing or an airbrush), sanding, breaking, and even the use of chemicals to cause corrosion. Some processes become very creative depending on the skill of the modeller. For instance several steps may be taken to create a rusting effect to ensure not only proper colouring, but also proper texture and lustre.

Weathering purchased models is common, at the least, weathering aims to reduce the plastic-like finish of scale models. The simulation of grime, rust, dirt, and wear adds realism. Some modellers simulate fuel stains on tanks, or corrosion on battery boxes. In some cases, evidence of accidents or repairs may be added, such as dents or freshly painted replacement parts, and weathered models can be nearly indistinguishable from their prototypes when photographed appropriately.

Methods of power

The sugar-cube sized electric motor in a Z scale model locomotive. The entire engine is only 50 mm (2") long. Tiny electric motor in a Z scale model locomotive.jpg
The sugar-cube sized electric motor in a Z scale model locomotive. The entire engine is only 50 mm (2") long.
Model of WP Steam Locomotive (1:3 size) at Guntur, India Guntur west terminal and a model train.jpg
Model of WP Steam Locomotive (1:3 size) at Guntur, India

Static diorama models or "push along" scale models are a branch of model railways for unpowered locomotives, examples are Lone Star and Airfix models. Powered model railways are now generally operated by low voltage direct current (DC) electricity supplied via the tracks, but there are exceptions, such as Märklin and Lionel Corporation, which use alternating current (AC). Modern Digital Command Control (DCC) systems use alternating current. Other locomotives, particularly large models, can use steam. Steam and clockwork-driven engines are still sought by collectors.

Clockwork

Most early models for the toy market were powered by clockwork and controlled by levers on the locomotive. Although this made control crude the models were large and robust enough that handling the controls was practical. Various manufacturers introduced slowing and stopping tracks that could trigger levers on the locomotive and allow station stops.

Electricity

Three-rail

Early electrical models used a three-rail system with the wheels resting on a metal track with metal sleepers that conducted power and a middle rail which provided power to a skid under the locomotive. This made sense at the time as models were metal and conductive. Modern plastics were not available and insulation was a problem. In addition the notion of accurate models had yet to evolve and toy trains and track were crude tinplate. A variation on the three-rail system, Trix Twin, allowed two trains to be independently controlled on one track, before the advent of Digital Command Control.

Two-rail

As accuracy became important some systems adopted two-rail power in which the wheels were isolated from each other and the rails carried the positive and negative supply with the right rail carrying the positive potential. This system precludes some track layouts that occur in the real world but would create short circuits in a two-rail model.

Stud contact

Other systems such as Märklin instead used fine metal studs to replace the central rail, allowing existing three-rail models to use more realistic track.

Overhead line

Where the model is of an electric locomotive, it may be supplied by overhead lines, like the full-size locomotive. Before Digital Command Control became available, this was one way of controlling two trains separately on the same track. The electric-outline model would be supplied by the overhead wire and the other model could be supplied by one of the running rails. The other running rail would act as a common return.

Battery

Early electric trains ran on trackside batteries because few homes in the late 19th century and early 20th century had electricity. Today, inexpensive train sets running on batteries are again common but regarded as toys and seldom used by hobbyists. Batteries located in the model often power garden railway and larger scale systems because of the difficulty in obtaining reliable power supply through the outdoor rails. The high power consumption and current draw of large-scale garden models is more easily and safely met with internal rechargeable batteries. Most large-scale battery-powered models use radio control.

Live steam

Engines powered by live steam are often built in large outdoor gauges of 5 inches (130 mm) and 7+12 inches (190 mm), are also available in Gauge 1, G scale, 16 mm scale and can be found in O and OO/HO. Hornby Railways produce live steam locomotives in OO, based on designs first arrived at by an amateur modeller. Other modellers have built live steam models in HO/OO, OO9 and N, and there is one in Z in Australia. [10]

Internal combustion

Occasionally gasoline-electric models, patterned after real diesel-electric locomotives, come up among hobbyists and companies like Pilgrim Locomotive Works have sold such locomotives. Large-scale petrol-mechanical and petrol-hydraulic models are available but unusual and pricier than the electrically powered versions.

Scratch building

Model of a Russian locomotive class FD number FD20-2865 at the Museum of the Moscow Railway Model of Russian Class FD locomotive FD20-2865.JPG
Model of a Russian locomotive class FD number FD20-2865 at the Museum of the Moscow Railway

Modern manufacturing techniques can allow mass-produced models to cost-effectively achieve a high degree of precision and realism.[ citation needed ] In the past this was not the case and scratch building was very common. Simple models are made using cardboard engineering techniques. More sophisticated models can be made using a combination of etched sheets of brass and low temperature castings. Parts that need machining, such as wheels and couplings are purchased.

Etched kits are still popular, still accompanied by low temperature castings. These kits produce models that are not covered by the major manufacturers or in scales that are not in mass production. Laser machining techniques have extended this ability to thicker materials for scale steam and other locomotive types. Scratch builders may also make silicone rubber moulds of the parts they create, and cast them in various plastic resins (see Resin casting), or plasters. This may be done to save duplication of effort, or to sell to others. Resin "craftsman kits" are also available for a wide range of prototypes.

Control

Coin-operated model train layout in Germany Coinop trains.jpg
Coin-operated model train layout in Germany

The first clockwork (spring-drive) and live steam locomotives ran until out of power, with no way for the operator to stop and restart the locomotive or vary its speed. The advent of electric trains, which appeared commercially in the 1890s, allowed control of the speed by varying the current or voltage. As trains began to be powered by transformers and rectifiers more sophisticated throttles appeared, and soon trains powered by AC contained mechanisms to change direction or go into neutral gear when the operator cycled the power. Trains powered by DC can change direction by reversing polarity.

Electricity permits control by dividing the layout into isolated blocks, where trains can be slowed or stopped by lowering or cutting power to a block. Dividing a layout into blocks permits operators to run more than one train with less risk of a fast train catching and hitting a slow train. Blocks can also trigger signals or other accessories, adding realism or whimsy. Three-rail systems often insulate one of the common rails on a section of track, and use a passing train to complete the circuit and activate an accessory.

Many layout builders are choosing digital operation of their layouts rather than the more traditional DC design. Of the several competing systems, the command system offered by the majority of manufacturers in 2020 was a variant of Digital Command Control (DCC). The advantages of DCC are that track voltage is constant (usually in the range of 20 volts AC) and the command throttle sends a signal to small circuit cards, or decoders, hidden inside the piece of equipment which control several functions of an individual locomotive, including speed, direction of travel, lights, smoke and various sound effects. This allows more realistic operation in that the modeller can operate independently several locomotives on the same stretch of track. Several manufacturers also offer software that can provide computer-control of DCC layouts.

In large scales, particularly for garden railways, radio control and DCC in the garden have become popular.

Model railway manufacturers

Magazines

Model train display at Chicago's Museum of Science and Industry Model train display at Chicago's Museum of Science and Industry.jpg
Model train display at Chicago's Museum of Science and Industry
A model railway based on a fictional location in the United States US model railroad 02.jpg
A model railway based on a fictional location in the United States

Layout standards organizations

Several organizations exist to set standardizations for connectibility between individual layout sections (commonly called "modules"). This is so several (or hundreds, given enough space and power) people or groups can bring together their own modules, connect them together with as little trouble as possible, and operate their trains. Despite different design and operation philosophies, different organizations have similar goals; standardized ends to facilitate connection with other modules built to the same specifications, standardized electricals, equipment, curve radii.

A humorous sign regarding "model railway disease" Model Railway disease.jpg
A humorous sign regarding "model railway disease"

See also

Displays and famous layouts
Groups dedicated to railway modelling

Related Research Articles

<span class="mw-page-title-main">G scale</span> Model railroad gauge

G scale or G gauge, also called large scale, is a track gauge for model railways which is often used for outdoor garden railways because of its size and durability. G scale trains use a fixed track gauge of 45 millimetres (1.75 in) to accommodate a range of rail transport modelling scales between narrow gauge (~1:13‒1:19‒1:20), metre gauge (1:22.5), Playmobil trains (~1:24), and standard gauge (~1:29–1:32).

<span class="mw-page-title-main">OO gauge</span> Model railroad gauge

OO gauge or OO scale is the most popular standard gauge model railway standard in the United Kingdom, outside of which it is virtually unknown. OO gauge is one of several 4 mm-scale standards, and the only one to be marketed by major manufacturers. The OO track gauge of 16.5 mm corresponds to prototypical gauge of 4 ft 1+12 in, rather than 4 ft 8+12 in standard gauge. However, since the 1960s, other gauges in the same scale have arisen—18.2 mm (EM) and 18.83 mm (Scalefour)—to reflect the desire of some modellers for greater scale accuracy.

<span class="mw-page-title-main">Scale model</span> Physical representation of an object

A scale model is a physical model which is geometrically similar to an object. Scale models are generally smaller than large prototypes such as vehicles, buildings, or people; but may be larger than small prototypes such as anatomical structures or subatomic particles. Models built to the same scale as the prototype are called mockups.

<span class="mw-page-title-main">O scale</span> Model railroad gauge

O scale is a scale commonly used for toy trains and rail transport modelling. Introduced by German toy manufacturer Märklin around 1900, by the 1930s three-rail alternating current O gauge was the most common model railroad scale in the United States and remained so until the early 1960s. In Europe, its popularity declined before World War II due to the introduction of smaller scales.

<span class="mw-page-title-main">HO scale</span> Model railroad scale of 1:87

HO or H0 is a rail transport modelling scale using a 1:87 scale. It is the most popular scale of model railway in the world. The rails are spaced 16.5 millimetres (0.650 in) apart for modelling 1,435 mm standard gauge tracks and trains in HO.

<span class="mw-page-title-main">N scale</span> Modelling scale of 1:160, 1:150 (Japan), 1:148 (UK)

N scale is a popular model railway scale. Depending upon the manufacturer, the scale ranges from 1:148 to 1:160. Effectively the scale is 1:159, 9 mm to 1,435 mm, which is the width of standard gauge railway. However the scale may vary to simulate wide or narrow gauge rail. In all cases, the gauge is 9 mm or 0.354 in. The term N gauge refers to the track dimensions, but in the United Kingdom in particular British N gauge refers to a 1:148 scale with 1:160 track gauge modelling. The terms N scale and N gauge are often inaccurately used interchangeably, as scale is defined as ratio or proportion of the model, and gauge only as a distance between rails. The scale 1:148 defines the rail-to-rail gauge equal to 9 mm exactly, so when calculating the rail or track use 1:160 and for engines and car wheel base use 1:148.

S scale is a model railroad scale modeled at 1:64 scale, S scale track gauge is 22.48 mm (0.885 in). S gauge trains are manufactured in both DC and AC powered varieties. S gauge is not to be confused with toy train standard gauge, a large-scale standard for toy trains in the early part of the 20th century.

<span class="mw-page-title-main">TT scale</span> Model railway scale

TT scale is a model railroading scale at 1:120 scale with a Track gauge of 12 mm between the rails. It is placed between HO scale (1:87) and N scale (1:160). Its original purpose, as the name suggests, was to make a train set small enough to assemble and operate on a tabletop.

<span class="mw-page-title-main">EM gauge</span>

EM gauge is a variant of 4 mm to a foot (1:76) scale used in model railways.

Z scale is one of the smallest commercially available model railway scales (1:220), with a track gauge of 6.5 mm / 0.256 in. Introduced by Märklin in 1972, Z scale trains operate on 0–10 volts DC and offer the same operating characteristics as all other two-rail, direct-current, analog model railways. Locomotives can be fitted with digital decoders for independent control. Model trains, track, structures, and human/animal figures are readily available in European, North American, and Japanese styles from a variety of manufacturers.

<span class="mw-page-title-main">Hornby Railways</span> British-owned model railway manufacturer

Hornby Hobbies Limited is a British-owned scale model manufacturing company which has been focused on model railways. Its roots date back to 1901 in Liverpool, when founder Frank Hornby received a patent for his Meccano construction toy. The first clockwork train was produced in 1920. In 1938, Hornby launched its first OO gauge train. In 1964, Hornby and Meccano were bought by their competitor, Tri-ang Railways, and sold when Tri-ang went into receivership. Hornby Railways became independent again in the 1980s, and became listed on the London Stock Exchange, but due to financial troubles reported in June 2017, became majority owned by British turnaround specialist Phoenix Asset Management.

<span class="mw-page-title-main">Third rail (model rail)</span>

The use of a third rail in rail transport modelling is a technique that was once applied, in order to facilitate easier wiring.

<span class="mw-page-title-main">4 mm scale</span> Model railway scale

4 mm scale is the most popular model railway scale used in the United Kingdom. The term refers to the use of 4 millimeters on the model equating to a distance of 1 foot (305 mm) on the prototype (1:76.2). It is also used for military modelling.

<span class="mw-page-title-main">Garden railway</span> Model railway system

A garden railway or garden railroad is a model railway system set up outdoors in a garden. While G is the most popular scale for garden railroads, 16 mm scale has a dedicated and growing following especially in the UK. Model locomotives in this scale are often live steam scale models of British narrow gauge prototypes. 16 mm scale track, the same gauge as O gauge is probably now more popular in the UK than G scale.

<span class="mw-page-title-main">Live steam</span> Steam-powered models and toys

Live steam is steam under pressure, obtained by heating water in a boiler. The steam may be used to operate stationary or moving equipment.

HOn30 gauge is the modelling of narrow-gauge railways in HO on N gauge track in 1:87 scale ratio.

<span class="mw-page-title-main">On30 gauge</span>

On30gauge is the modelling of narrow gauge railways in O scale on HO gauge track in 1:48 scale ratio by American and Australian model railroaders, in 1:43.5 scale ratio by British and French model railroaders and 1:45 by Continental European model railroaders.

<span class="mw-page-title-main">On2 gauge</span>

On2 gauge is part of the hobby of rail transport modeling. The name is based on the common USA model railroad O scale of 1:48 and refers to the gauge between the rails and the fact that it is narrow gauge, thus 'On2'.

<span class="mw-page-title-main">FREMO</span>

The Friendship of European railway modellers is a modular rail transport modelling standard. Individual track and scenery modules are built to a common standard and are joined together to make larger model railway layouts. The FREMO standards were created following a meeting in Europe in 1981.

References

  1. "Chemin de fer du Prince imperial". Le Monde Illustré (in French): 229-230. 8 October 1859.
  2. Hollowood, Russell (9 April 2014). "Model students mark record for world's oldest working model railway". National Railway Museum. Retrieved 14 February 2019.
  3. "TMRR". trainmountain.org. Archived from the original on 2020-09-30. Retrieved 2005-10-29.
  4. "Banbury Connections".
  5. "Home". themodelrailwayclub.org.
  6. "HMRS: HMRS". hmrs.org.uk.
  7. "MODELING IN SCALE – Dimensions, Conversion Charts, Sizes, F.A.Q.s". www.oakridgehobbies.com. Archived from the original on 2016-11-17. Retrieved 2016-11-17.
  8. "Best Photos of Model Train Scales Chart - Scale Model Conversion Chart, Model Railroad Scales Comparison and Scale Model Trains / sawyoo.com". www.sawyoo.com. Retrieved 2016-11-17.
  9. "Bragdon Enterprises – Geo Foam Instructions". Bragdonent.com. Retrieved 2012-05-05.
  10. "Ultraminiature Live Steam".
  11. kres.de
  12. "ausTRAK website". Archived from the original on 2006-09-08.
  13. "FREMO homepage" (in German and English).
  14. "Free-mo homepage".
  15. "N-orma homepage".
  16. "oNeTrack homepage". Archived from the original on 2006-09-08.
  17. "Sipping and Switching Society of NC website".
  18. "sTTandard homepage".
  19. "T-TRAK website".
  20. "Z-Bend Track homepage". Archived from the original on 2008-08-28.