Senecavirus

Last updated
Senecavirus
3CJI Senecavirus.png
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Pisoniviricetes
Order: Picornavirales
Family: Picornaviridae
Genus:Senecavirus
Synonyms
  • Seneca Valley virus
  • Seneca Valley virus-001

Senecavirus is a genus of viruses in the order Picornavirales , in the family Picornaviridae . Pig and maybe also cow serve as natural hosts. There is only one species in this genus: Senecavirus A. [1] [2] Senecavirus is a replication-competent oncolytic picornavirus. It has selective tropism for cancers with neuroendocrine features including small cell lung cancer (SCLC) and several pediatric solid tumors including retinoblastoma, neuroblastoma, and medulloblastoma. [3] A Phase I clinical trial of Senecavirus in adults with neuroendocrine tumors showed that senecavirus is apparently safe to administer at doses up to 1E11 vp/kg. [4] It has potential antineoplastic activity. [5] [6]

Contents

Structure

Viruses in Senecavirus are non-enveloped, with icosahedral, spherical, and round geometries, with T=pseudo3 symmetry. The diameter is around 30 nm. Genomes are linear and non-segmented, around 7.3kb in length. [1]

GenusStructureSymmetryCapsidGenomic arrangementGenomic segmentation
SenecavirusIcosahedralPseudo T=3Non-envelopedLinearMonopartite

Life cycle

Viral replication is cytoplasmic. Entry into the host cell is achieved by attachment of the virus to host receptors, which mediates endocytosis. Replication follows the positive stranded RNA virus replication model. Positive stranded RNA virus transcription is the method of transcription. The virus exits the host cell by lysis, and viroporins. Pig and maybe also cow serve as the natural host. [1]

The receptor for Seneca Valley virus has been identified as anthrax toxin receptor 1. [7]

GenusHost detailsTissue tropismEntry detailsRelease detailsReplication siteAssembly siteTransmission
SenecavirusPigs, CowOncolyticCell receptor endocytosisLysisCytoplasmCytoplasmUnknown

Discovery and origin

The complete genome sequence of senecavirus was completed in 2008. [8]

An infectious clone of senecavirus was reported in 2012. [9]

Senecavirus has been proposed to attack cancer stem cells. [10]

Diagnostic monoclonal antibodies have been generated against senecavirus. [11]

While the sequence of SVV's protein-coding genome is most similar to members in the Cardiovirus genus, the non-coding RNA internal ribosome entry site (IRES) is most similar to those of the Pestivirus genus, including classical swine fever virus, and Hepacivirus genus, including Hepatitis C virus. [12]

The SVV IRES RNA shares similarities in sequence, structure, and function with the hepatitis C virus IRES. Subdomain IIa of the SVV and HCV IRES shares a similar structure and ligand-binding function as seen in its crystal structure. [13] This subdomain IIa region is classified as a ligand-responsive RNA switch which adopts well-defined ligand-free and bound conformations without breaking or forming any base pairs in its secondary structure upon interconversion between the two states. [14] This RNA switch from the SVV IRES has been incorporated into triangular RNA nanostructures. [15]

Clinical trials

The initial isolate is being developed as an anti-cancer therapeutic by virtual company Neotropix, Inc. under the name NTX-010.

Phase I

Phase II

Virus replication

Senecavirus uses the anthrax toxin receptor 1 (ANTXR1) protein as a receptor. [19] A high-resolution structure of senecavirus with this receptor has been published. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Picornavirus</span> Family of viruses

Picornaviruses are a group of related nonenveloped RNA viruses which infect vertebrates including fish, mammals, and birds. They are viruses that represent a large family of small, positive-sense, single-stranded RNA viruses with a 30 nm icosahedral capsid. The viruses in this family can cause a range of diseases including the common cold, poliomyelitis, meningitis, hepatitis, and paralysis.

A cancer vaccine, or oncovaccine, is a vaccine that either treats existing cancer or prevents development of cancer. Vaccines that treat existing cancer are known as therapeutic cancer vaccines or tumor antigen vaccines. Some of the vaccines are "autologous", being prepared from samples taken from the patient, and are specific to that patient.

<span class="mw-page-title-main">Kaposi's sarcoma-associated herpesvirus</span> Species of virus

Kaposi's sarcoma-associated herpesvirus (KSHV) is the ninth known human herpesvirus; its formal name according to the International Committee on Taxonomy of Viruses (ICTV) is Human gammaherpesvirus 8, or HHV-8 in short. Like other herpesviruses, its informal names are used interchangeably with its formal ICTV name. This virus causes Kaposi's sarcoma, a cancer commonly occurring in AIDS patients, as well as primary effusion lymphoma, HHV-8-associated multicentric Castleman's disease and KSHV inflammatory cytokine syndrome. It is one of seven currently known human cancer viruses, or oncoviruses. Even after many years since the discovery of KSHV/HHV8, there is no known cure for KSHV associated tumorigenesis.

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy (immuno-oncotherapy) is the stimulation of the immune system to treat cancer, improving the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.

An oncolytic virus is a virus that preferentially infects and kills cancer cells. As the infected cancer cells are destroyed by oncolysis, they release new infectious virus particles or virions to help destroy the remaining tumour. Oncolytic viruses are thought not only to cause direct destruction of the tumour cells, but also to stimulate host anti-tumour immune system responses. Oncolytic viruses also have the ability to affect the tumor micro-environment in multiple ways.

Virotherapy is a treatment using biotechnology to convert viruses into therapeutic agents by reprogramming viruses to treat diseases. There are three main branches of virotherapy: anti-cancer oncolytic viruses, viral vectors for gene therapy and viral immunotherapy. These branches use three different types of treatment methods: gene overexpression, gene knockout, and suicide gene delivery. Gene overexpression adds genetic sequences that compensate for low to zero levels of needed gene expression. Gene knockout uses RNA methods to silence or reduce expression of disease-causing genes. Suicide gene delivery introduces genetic sequences that induce an apoptotic response in cells, usually to kill cancerous growths. In a slightly different context, virotherapy can also refer more broadly to the use of viruses to treat certain medical conditions by killing pathogens.

<i>Murine respirovirus</i> Sendai virus, virus of rodents

Murine respirovirus, formerly Sendai virus (SeV) and previously also known as murine parainfluenza virus type 1 or hemagglutinating virus of Japan (HVJ), is an enveloped, 150-200 nm–diameter, negative sense, single-stranded RNA virus of the family Paramyxoviridae. It typically infects rodents and it is not pathogenic for humans or domestic animals.

<span class="mw-page-title-main">Hepatitis A virus internal ribosome entry site (IRES)</span>

This family represents the internal ribosome entry site (IRES) of the hepatitis A virus. HAV IRES is a 450 nucleotide long sequence located in the 735 nt long 5’ UTR of Hepatitis A viral RNA genome. IRES elements allow cap and end-independent translation of mRNA in the host cell. The IRES achieves this by mediating the internal initiation of translation by recruiting a ribosomal 40S pre-initiation complex directly to the initiation codon and eliminates the requirement for eukaryotic initiation factor, eIF4F.

Interleukin-28 receptor is a type II cytokine receptor found largely in epithelial cells. It binds type 3 interferons, interleukin-28 A, Interleukin-28B, interleukin 29 and interferon lambda 4. It consists of an α chain and shares a common β subunit with the interleukin-10 receptor. Binding to the interleukin-28 receptor, which is restricted to select cell types, is important for fighting infection. Binding of the type 3 interferons to the receptor results in activation of the JAK/STAT signaling pathway.

Merkel cell polyomavirus was first described in January 2008 in Pittsburgh, Pennsylvania. It was the first example of a human viral pathogen discovered using unbiased metagenomic next-generation sequencing with a technique called digital transcriptome subtraction. MCV is one of seven currently known human oncoviruses. It is suspected to cause the majority of cases of Merkel cell carcinoma, a rare but aggressive form of skin cancer. Approximately 80% of Merkel cell carcinoma (MCC) tumors have been found to be infected with MCV. MCV appears to be a common—if not universal—infection of older children and adults. It is found in respiratory secretions, suggesting that it might be transmitted via a respiratory route. However, it has also been found elsewhere, such as in shedded healthy skin and gastrointestinal tract tissues, thus its precise mode of transmission remains unknown. In addition, recent studies suggest that this virus may latently infect the human sera and peripheral blood mononuclear cells.

Oncolytics Biotech Inc. is a Canadian company headquartered in Calgary, Alberta, that is developing an intravenously delivered immuno-oncolytic virus called pelareorep for the treatment of solid tumors and hematological malignancies. Pelareorep is a non-pathogenic, proprietary isolate of the unmodified reovirus that: induces selective tumor lysis and promotes an inflamed tumor phenotype through innate and adaptive immune responses.

Pelareorep is a proprietary isolate of the unmodified human reovirus being developed as a systemically administered immuno-oncological viral agent for the treatment of solid tumors and hematological malignancies. Pelareorep is an oncolytic virus, which means that it preferentially lyses cancer cells. Pelareorep also promotes an inflamed tumor phenotype through innate and adaptive immune responses. Preliminary clinical trials indicate that it may have anti-cancer effects across a variety of cancer types when administered alone and in combination with other cancer therapies.

RIG-I-like receptors are a type of intracellular pattern recognition receptor involved in the recognition of viruses by the innate immune system. RIG-I is the best characterized receptor within the RIG-I like receptor (RLR) family. Together with MDA5 and LGP2, this family of cytoplasmic pattern recognition receptors (PRRs) are sentinels for intracellular viral RNA that is a product of viral infection. The RLR receptors provide frontline defence against viral infections in most tissues.

JX-594 is an oncolytic virus is designed to target and destroy cancer cells. It is also known as Pexa-Vec, INN pexastimogene devacirepvec) and was constructed in Dr. Edmund Lattime's lab at Thomas Jefferson University, tested in clinical trials on melanoma patients, and licensed and further developed by SillaJen.

<span class="mw-page-title-main">Talimogene laherparepvec</span> Gene therapy medication

Talimogene laherparepvec, sold under the brand name Imlygic, is a biopharmaceutical medication used to treat melanoma that cannot be operated on; it is injected directly into a subset of lesions which generates a systemic immune response against the recipient's cancer. The final four year analysis from the pivotal phase 3 study upon which TVEC was approved by the FDA showed a 31.5% response rate with a 16.9% complete response (CR) rate. There was also a substantial and statistically significant survival benefit in patients with earlier metastatic disease and in patients who hadn't received prior systemic treatment for melanoma. The earlier stage group had a reduction in the risk of death of approximately 50% with one in four patients appearing to have met, or be close to be reaching, the medical definition of cure. Real world use of talimogene laherparepvec have shown response rates of up to 88.5% with CR rates of up to 61.5%.

<span class="mw-page-title-main">Oncolytic herpes virus</span>

Many variants of herpes simplex virus have been considered for viral therapy of cancer; the early development of these was thoroughly reviewed in the journal Cancer Gene Therapy in 2002. This page describes the most notable variants—those tested in clinical trials: G207, HSV1716, NV1020 and Talimogene laherparepvec. These attenuated versions are constructed by deleting viral genes required for infecting or replicating inside normal cells but not cancer cells, such as ICP34.5, ICP6/UL39, and ICP47.

Adenovirus varieties have been explored extensively as a viral vector for gene therapy and also as an oncolytic virus.

Measles virus encoding the human thyroidal sodium iodide symporter or MV-NIS is an attenuated oncolytic Edmonston (Ed) strain of measles virus.

PVSRIPO, or PVS-RIPO, is the name of a modified polio virus that has recently shown promise for treating cancer. It is the focus of clinical trials being conducted at Duke University.

Transgene S.A. is a French biotechnology company founded in 1979. It is based in Illkirch-Graffenstaden, near Strasbourg, and develops and manufactures immunotherapies for the treatment of cancer.

References

  1. 1 2 3 "Viral Zone". ExPASy. Retrieved 15 June 2015.
  2. "Virus Taxonomy: 2020 Release". International Committee on Taxonomy of Viruses (ICTV). March 2021. Retrieved 20 May 2021.
  3. Reddy PS, Burroughs KD, Hales LM, Ganesh S, Jones BH, Idamakanti N, Hay C, Li SS, Skele KL, Vasko A-, Yang J, Watkins DN, Rudin CM, Hallenbeck PL (2007). "Seneca Valley Virus, a Systemically Deliverable Oncolytic Picornavirus, and the Treatment of Neuroendocrine Cancers". JNCI Journal of the National Cancer Institute. 99 (21): 1623–1633. doi:10.1093/jnci/djm198. PMC   5261858 . PMID   17971529.
  4. 1 2 Rudin CM, Poirier JT, Senzer NN, Stephenson J, Loesch D, Burroughs KD, Reddy PS, Hann CL, Hallenbeck PL (February 15, 2011). "Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features". Clinical Cancer Research. 17 (4): 888–95. doi:10.1158/1078-0432.CCR-10-1706. PMC   5317273 . PMID   21304001.
  5. National Cancer Institute Definition of Seneca Valley virus-001. National Cancer Institute Retrieved on 2008-10-09.
  6. Morton CL, Houghton PJ, Kolb EA, et al. (August 2010). "Initial testing of the replication competent Seneca Valley virus (NTX-010) by the pediatric preclinical testing program". Pediatr Blood Cancer. 55 (2): 295–303. doi:10.1002/pbc.22535. PMC   3003870 . PMID   20582972.
  7. Miles LA, Burga LN, Gardner EE, Bostina M, Poirier JT, Rudin CM (2017) Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus. J Clin Invest
  8. Hales LM, Knowles NJ, Reddy PS, Xu L, Hay C, Hallenbeck PL (2008). "Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus". Journal of General Virology. 89 (5): 1265–1275. doi: 10.1099/vir.0.83570-0 . PMID   18420805.
  9. Poirier JT, Reddy PS, Idamakanti N, Li SS, Stump KL, Burroughs KD, Hallenbeck PL, Rudin CM (2012). "Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001". Journal of General Virology. 93 (Pt 12): 2606–2613. doi: 10.1099/vir.0.046011-0 . PMID   22971818.
  10. Friedman GK, Cassady KA, Beierle EA, Markert JM, Gillespie GY (2012). "Targeting pediatric cancer stem cells with oncolytic virotherapy". Pediatric Research. 71 (4–2): 500–510. doi:10.1038/pr.2011.58. PMC   3607376 . PMID   22430386.
  11. Yang M, Van Bruggen R, Xu W (2011). "Generation and diagnostic application of monoclonal antibodies against Seneca Valley virus". Journal of Veterinary Diagnostic Investigation. 24 (1): 42–50. doi: 10.1177/1040638711426323 . PMID   22362934.
  12. Willcocks MM, Locker N, Gomwalk Z, Royall E, Bakhshesh M, Belsham GJ, Idamakanti N, Burroughs KD, Reddy PS, Hallenbeck PL, Roberts LO (2011). "Structural Features of the Seneca Valley Virus Internal Ribosome Entry Site (IRES) Element: A Picornavirus with a Pestivirus-Like IRES". Journal of Virology. 85 (9): 4452–4461. doi:10.1128/JVI.01107-10. PMC   3126232 . PMID   21325406.
  13. Boerneke M, Dibrov S, Gu J, Wyles D, Hermann T (November 11, 2014). "Functional conservation despite structural divergence in ligand-responsive RNA switches". Proc Natl Acad Sci U S A. 111 (45): 15952–7. Bibcode:2014PNAS..11115952B. doi: 10.1073/pnas.1414678111 . PMC   4234586 . PMID   25349403.
  14. Boerneke M, Hermann T (August 2015). "Ligand-responsive RNA mechanical switches". RNA Biology. 12 (8): 780–786. doi:10.1080/15476286.2015.1054592. PMC   4615790 . PMID   26158858.
  15. Boerneke M, Dibrov S, Hermann T (February 23, 2016). "Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles". Angew Chem Int Ed Engl. 55 (12): 4097–100. doi:10.1002/anie.201600233. PMC   4824544 . PMID   26914842.
  16. "Safety Study of Seneca Valley Virus in Patients With Solid Tumors With Neuroendocrine Features". ClinicalTrials.gov. 23 February 2010.
  17. "Seneca Valley Virus-001 After Chemotherapy in Treating Patients With Extensive-Stage Small Cell Lung Cancer". clinicaltrials.gov.
  18. "Seneca Valley Virus-001 and Cyclophosphamide in Treating Young Patients With Relapsed or Refractory Neuroblastoma, Rhabdomyosarcoma, or Rare Tumors With Neuroendocrine Features". clinicaltrials.gov.
  19. Miles LA, Burga LN, Gardner EE, Bostina M, Poirier JT, Rudin CM (1 August 2017). "Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus". The Journal of Clinical Investigation. 127 (8): 2957–2967. doi: 10.1172/JCI93472 . PMC   5531414 . PMID   28650343.
  20. Jayawardena N, Burga LN, Easingwood RA, Takizawa Y, Wolf M, Bostina M (13 November 2018). "Structural basis for anthrax toxin receptor 1 recognition by Seneca Valley Virus". Proceedings of the National Academy of Sciences of the United States of America. 115 (46): E10934–E10940. Bibcode:2018PNAS..11510934J. doi: 10.1073/pnas.1810664115 . PMC   6243253 . PMID   30381454.