Slip ring

Last updated
Sketch of a cross-section of slip rings for an electric motor. In this example, the slip rings have a brush-lifting device and a sliding contact bar, allowing the slip-rings to be short-circuited when no longer required. This can be used in starting a slip-ring induction motor, for example. Electric Motor with Slip Rings.svg
Sketch of a cross-section of slip rings for an electric motor. In this example, the slip rings have a brush-lifting device and a sliding contact bar, allowing the slip-rings to be short-circuited when no longer required. This can be used in starting a slip-ring induction motor, for example.

A slip ring is a device that allows the transmission of media such as power, electrical signals, energy, optical signals, gases or liquids from a fixed structure to a rotating structure. A slip ring can be used in any electromechanical system that requires rotation while transmitting power or signals. It can improve mechanical performance, simplify system operation and eliminate damage-prone wires dangling from movable joints.

Contents

Also called rotary electrical interfaces, rotating electrical connectors, collectors, swivels, or electrical rotary joints, these rings are commonly found in slip ring motors, electrical generators for alternating current (AC) systems and alternators and in packaging machinery, cable reels, and wind turbines. They can be used on any rotating object to transfer power, control circuits, or analog or digital signals including data such as those found on aerodrome beacons, rotating tanks, power shovels, radio telescopes, telemetry systems, heliostats or ferris wheels.

A slip ring (in electrical engineering terms) is a method of making an electrical connection through a rotating assembly. Formally, it is an electric transmission device that allows energy flow between two electrical rotating parts, such as in a motor.

Slip rings on a hydroelectric generator;
A - stationary spring-loaded graphite brushes,
B - rotating steel contact ring,
C - insulated connections to generator field winding,
D - top end of generator shaft. Sliprings annotated.jpg
Slip rings on a hydroelectric generator;
A - stationary spring-loaded graphite brushes,
B - rotating steel contact ring,
C - insulated connections to generator field winding,
D - top end of generator shaft.

Composition

Typically, a slip ring consists of a stationary graphite or metal contact (brush) which rubs on the outside diameter of a rotating metal ring. As the metal ring turns, the electric current or signal is conducted through the stationary brush to the metal ring making the connection. Additional ring/brush assemblies are stacked along the rotating axis if more than one electrical circuit is needed. Either the brushes or the rings are stationary and the other component rotates. [1] [2] This simple design has been used for decades as a rudimentary method of passing current into a rotating device.

Alternative names and uses

Some other names used for slip ring are collector ring, rotary electrical contact and electrical slip ring. Some people also use the term commutator; however, commutators are somewhat different and are specialized for use on DC motors and generators. While commutators are segmented, slip rings are continuous, and the terms are not interchangeable. Rotary transformers are often used instead of slip rings in high-speed or low-friction environments. [3]

A slip ring can be used within a rotary union to function concurrently with the device, commonly referred to as a rotary joint. Slip rings do the same for electrical power and signal that rotary unions do for fluid media. They are often integrated into rotary unions to send power and data to and from rotating machinery in conjunction with the media that the rotary union provides. [4]

Slip ring types

The two most common types of slip ring SlipRings.jpg
The two most common types of slip ring

Slip rings are made in various types and sizes; one device made for theatrical stage lighting, for example, had 100 conductors. [5] The slip ring allows for unlimited rotations of the connected object, whereas a slack cable can only be twisted a few times before it will bind up and restrict rotation.

Mercury-wetted slip rings

Mercury-wetted slip rings, noted for their low resistance and stable connection use a different principle which replaces the sliding brush contact with a pool of liquid metal molecularly bonded to the contacts. [6] During rotation the liquid metal maintains the electrical connection between the stationary and rotating contacts. However, the use of mercury can pose safety concerns if not properly handled, as it is a toxic substance. The slip ring device is also limited by temperature, as mercury solidifies at approximately -40 °C. [7]

Pancake slip rings

A pancake slip ring [8] has the conductors arranged on a flat disc as concentric rings centered on the rotating shaft. This configuration has greater weight and volume for the same circuits, greater capacitance and crosstalk, greater brush wear and more readily collects wear debris on its vertical axis. However, a pancake offers reduced axial length for the number of circuits, and so may be appropriate in some applications.

Wireless slip rings

Wireless slip rings do not rely on the typical friction-based metal and carbon brush contact methods that have been employed by slip rings since their invention, such as those explored above. Instead, they transfer both power and data wirelessly via a magnetic field, which is created by the coils that are placed in the rotating receiver, and the stationary transmitter. [9] Wireless slip rings are considered an upgrade from — or alternative to — traditional slip rings, as their lack of standard mechanical rotating parts means they are typically more resilient in harsh operating environments and require less maintenance. However, the amount of power that can be transmitted between coils is limited; typically a traditional contact-type slip ring can transmit orders of magnitude more power in the same volume.

Optical slip rings

An optical slip ring, also known as a fiber optic rotary joint or optical rotary joint, is a device used in various applications to transmit optical signals (light) from a stationary component to a rotating component without any interference or signal loss. It is the optical equivalent of an electrical slip ring, which transmits electrical signals across rotating interfaces. [10]

The primary purpose of an optical slip ring is to maintain continuous and uninterrupted communication between devices or systems that are rotating or in relative motion. This is commonly seen in applications such as: optical fiber communications, remote sensing and instrumentation, military equipment, wind turbines and other fields..

Through bore Slip Ring

A through-hole slip ring, also known as a hollow shaft slip ring, is a specialized electrical component used to transmit electrical signals, power or data from a stationary structure to a rotating structure. The term "through-hole" refers to the central opening or hollow shaft through the center of the slip ring that allows other components or structures to pass through. [11]

Related Research Articles

<span class="mw-page-title-main">Electric motor</span> Machine that converts electrical energy into mechanical energy

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates in reverse, converting mechanical energy into electrical energy.

<span class="mw-page-title-main">Commutator (electric)</span> Device for changing direction of current

A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. It consists of a cylinder composed of multiple metal contact segments on the rotating armature of the machine. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator, making sliding contact with successive segments of the commutator as it rotates. The windings on the armature are connected to the commutator segments.

<span class="mw-page-title-main">Anti-twister mechanism</span> Special way of connecting two objects through flexible links

The anti-twister or antitwister mechanism is a method of connecting a flexible link between two objects, one of which is rotating with respect to the other, in a way that prevents the link from becoming twisted. The link could be an electrical cable or a flexible conduit.

<span class="mw-page-title-main">Brushless DC electric motor</span> Synchronous electric motor powered by an inverter

A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor. This control system is an alternative to the mechanical commutator (brushes) used in many conventional electric motors.

<span class="mw-page-title-main">Rotary encoder</span> Electromechanical device

A rotary encoder, also called a shaft encoder, is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals.

<span class="mw-page-title-main">Synchro</span> Variable transformers used in control systems

A synchro is, in effect, a transformer whose primary-to-secondary coupling may be varied by physically changing the relative orientation of the two windings. Synchros are often used for measuring the angle of a rotating machine such as an antenna platform or transmitting rotation. In its general physical construction, it is much like an electric motor. The primary winding of the transformer, fixed to the rotor, is excited by an alternating current, which by electromagnetic induction, causes voltages to appear between the Y-connected secondary windings fixed at 120 degrees to each other on the stator. The voltages are measured and used to determine the angle of the rotor relative to the stator.

<span class="mw-page-title-main">DC motor</span> Motor which works on direct current

A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

<span class="mw-page-title-main">Rotary converter</span> Electrical machine

A rotary converter is a type of electrical machine which acts as a mechanical rectifier, inverter or frequency converter.

<span class="mw-page-title-main">Armature (electrical)</span> Power-producing component of an electric machine

In electrical engineering, the armature is the winding of an electric machine which carries alternating current. The armature windings conduct AC even on DC machines, due to the commutator action or due to electronic commutation, as in brushless DC motors. The armature can be on either the rotor or the stator, depending on the type of electric machine.

<span class="mw-page-title-main">Brush (electric)</span> Electrical contact that conducts current

A brush or carbon brush is an electrical contact which conducts current between stationary wires and moving parts, most commonly in a rotating shaft. Typical applications include electric motors, alternators and electric generators. The lifespan of a carbon brush depends on how much the motor is used, and how much power is put through the motor.

<span class="mw-page-title-main">Field coil</span> Electromagnet used to generate a magnetic field in an electro-magnetic machine

A field coil is an electromagnet used to generate a magnetic field in an electro-magnetic machine, typically a rotating electrical machine such as a motor or generator. It consists of a coil of wire through which a current flows.

<span class="mw-page-title-main">Gramme machine</span> Electrical generator that produces direct current

A Gramme machine, Gramme ring, Gramme magneto, or Gramme dynamo is an electrical generator that produces direct current, named for its Belgian inventor, Zénobe Gramme, and was built as either a dynamo or a magneto. It was the first generator to produce power on a commercial scale for industry. Inspired by a machine invented by Antonio Pacinotti in 1860, Gramme was the developer of a new induced rotor in form of a wire-wrapped ring and demonstrated this apparatus to the Academy of Sciences in Paris in 1871. Although popular in 19th century electrical machines, the Gramme winding principle is no longer used since it makes inefficient use of the conductors. The portion of the winding on the interior of the ring cuts no flux and does not contribute to energy conversion in the machine. The winding requires twice the number of turns and twice the number of commutator bars as an equivalent drum-wound armature.

<span class="mw-page-title-main">AC motor</span> Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

<span class="mw-page-title-main">Rotary transformer</span>

A rotary (rotatory) transformer is a specialized transformer used to couple electrical signals between two parts that rotate in relation to each other. They may be either cylindrical or 'pancake' shaped.

A mercury swivel commutator is an electrical commutator typically used in electrophysiological experiments on head free or moving animals. Electrical recordings from stationary, head-fixed animals can be done with electrodes attached to a stereotaxic rig. The wires leading from the electrode can be connected to the amplifier and recording setup using regular wires, since no twisting occurs. Freely moving animals may turn through several revolutions in one direction. While recording from freely moving animals, therefore, an electrical commutator is needed to prevent twisting of the wires that go from the electrode to the amplifier/recorder.

<span class="mw-page-title-main">Rotor (electric)</span> Non-stationary part of a rotary electric motor

The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.

<span class="mw-page-title-main">Dynamo</span> Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

In electrical engineering, electric machine is a general term for machines using electromagnetic forces, such as electric motors, electric generators, and others. They are electromechanical energy converters: an electric motor converts electricity to mechanical power while an electric generator converts mechanical power to electricity. The moving parts in a machine can be rotating or linear. Besides motors and generators, a third category often included is transformers, which although they do not have any moving parts are also energy converters, changing the voltage level of an alternating current.

<span class="mw-page-title-main">Rotary union</span>

A rotary union is a union that allows for rotation of the united parts. It is thus a device that provides a seal between a stationary supply passage and a rotating part to permit the flow of a fluid into and/or out of the rotating part. Fluids typically used with rotary joints and rotating unions include various heat transfer media and fluid power media such as steam, water, thermal oil, hydraulic fluid, and coolants. A rotary union is sometimes referred to as a rotating union, rotary valve, swivel union,rotorseal, rotary couplings, rotary joint, rotating joints, hydraulic coupling, pneumatic rotary union, through bore rotary union, air rotary union, electrical rotary union, or vacuum rotary union

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References

  1. "Cobham plc :: Aerospace and Security, Aerospace Communications, Annemasse". Cobham.com. 2011-02-13. Archived from the original on 2013-05-27. Retrieved 2011-09-02.
  2. "how slip rings work". Uea-inc.com. Retrieved 2011-09-02.
  3. "Slip Ring Glossary". PeterLaper. Retrieved 2013-01-24.
  4. "Slip Ring definition" . Retrieved 2013-03-01.
  5. Alan Hendrickson, Colin Buckhurst Mechanical design for the stage Focal Press, 2008 ISBN   0-240-80631-X, page 379 with an illustration of pancake and drum-type slip rings.
  6. "mercotac".
  7. "Frequently Asked Slip Ring Questions". Moog.com. 2009-06-23. Retrieved 2011-09-02.
  8. Peter W. Fortescue, John Stark, Graham Swinerd Spacecraft systems engineering John Wiley and Sons, 2003 ISBN   0-470-85102-3 page 521
  9. "Slip Rings | How Does a Slip Ring Work • PowerbyProxi". PowerbyProxi. Archived from the original on 2016-11-24. Retrieved 2016-11-24.
  10. "Fiber Optic Rotary Joints". Moog, Inc. - Precision motion control products, systems, servovalves, actuators.
  11. "Slip Rings with Through Bores". Moog, Inc. - Precision motion control products, systems, servovalves, actuators.