SpaceX CRS-7

Last updated

SpaceX CRS-7
SpaceX CRS-7 launch failure.jpg
Disintegration of the SpaceX CRS-7 launch vehicle approximately two minutes after liftoff as seen from a NASA tracking camera.
Mission type ISS resupply
Operator NASA
Mission durationPlanned: 1 month
Final: 2 minutes, 19 seconds
Spacecraft properties
SpacecraftDragon C109
Spacecraft type Dragon CRS
Manufacturer SpaceX
Start of mission
Launch dateJune 28, 2015, 14:21:11 (2015-06-28UTC14:21:11)  UTC
Rocket Falcon 9 v1.1
Launch site Cape Canaveral SLC-40
Contractor SpaceX
End of mission
DisposalDestroyed on launch
DestroyedJune 28, 2015, 14:23:30 (2015-06-28UTC14:23:31)  UTC
Orbital parameters
Reference system Geocentric
Regime Low Earth
Inclination 51.6°
SpaceX CRS-7 Patch.png
NASA SpX-7 mission patch
OA-4  
 

SpaceX CRS-7, also known as SpX-7, [1] was a private American Commercial Resupply Service mission to the International Space Station, contracted to NASA, which launched and failed on June 28, 2015. It disintegrated 139 seconds into the flight after launch from Cape Canaveral, just before the first stage was to separate from the second stage. [2] It was the ninth flight for SpaceX's uncrewed Dragon cargo spacecraft and the seventh SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract. The vehicle launched on a Falcon 9 v1.1 launch vehicle. It was the nineteenth overall flight for the Falcon 9 and the fourteenth flight for the substantially upgraded Falcon 9 v1.1.

Contents

Launch history

SpaceX CRS-7 prior to launch Falcon 9 carrying CRS-7 Dragon on SLC-40 pad (19045370790).jpg
SpaceX CRS-7 prior to launch

In January 2015, the launch was tentatively scheduled by NASA for no earlier than June 13, 2015. This was adjusted to June 22, 2015, then moved forward to June 19, 2015, and adjusted again to June 26, 2015. [3] Subsequently, the launch had been rescheduled to June 28, 2015, at 14:21:11 UTC, from Cape Canaveral LC-40. [4] The launch was scheduled to be the third controlled-descent and landing test for the Falcon 9's first stage. It would have attempted to land on a new autonomous drone ship named Of Course I Still Love You – named after a ship in the novel The Player of Games by Iain M. Banks. [5] The spacecraft was planned to stay in orbit for five weeks before returning to Earth with approximately 1,400 pounds (640 kg) of supplies and waste. [5]

Launch failure

Video of disintegration and explosion of rocket

Performance was nominal until 139 seconds into launch when a cloud of white vapor appeared, followed by a rapid loss of pressure in the liquid oxygen tank of the Falcon 9's second stage. The booster continued on its trajectory until the vehicle completely broke up several seconds later. The Dragon CRS-7 capsule was ejected from the exploding launch vehicle and continued transmitting data until it impacted with the ocean. SpaceX officials stated that it could have been recovered if the parachutes had deployed, but the software in the capsule did not include any provisions for parachute deployment in this situation. [6] It is assumed that the capsule crumpled and broke up on impact. Subsequent investigation traced the accident to the failure of a strut that secured a high-pressure helium bottle inside the second stage's liquid-oxygen tank. With the helium pressurization system integrity breached, excess helium quickly flooded the liquid-oxygen tank, causing it to overpressurize and burst. [7] The report from SpaceX pointed out that the stainless-steel eye bolt was rated for a load of 10000 pounds, but failed at 2000 pounds. [8]

An independent investigation by NASA concluded that the most probable cause of the strut failure was a design error: instead of using a stainless-steel eye bolt made of aerospace-grade material, SpaceX chose an industrial-grade material without adequate screening and testing and overlooked the recommended safety margin. [9]

Payload

Primary payload

NASA contracted with SpaceX for the CRS-7 mission and set the primary payload, date/time of launch, and orbital parameters for the Dragon space capsule.

As of July 2013, the first International Docking Adapter, IDA-1, was scheduled for delivery to the International Space Station on CRS-7. [10] This adapter would have been attached to one of the Pressurized Mating Adapters (PMA-2 or PMA-3) and converted the APAS-95 docking interface to the newer NASA Docking System (NDS). [11] [12] These adapters allow docking of the newer human-transport spacecraft of the Commercial Crew Program. Previous United States cargo missions after the retirement of the Space Shuttle were berthed, rather than docked, while docking is considered the safer and preferred method for spacecraft carrying humans. The subsequent Cargo Dragon missions CRS-9 and CRS-18 brought docking adapters IDA-2 and IDA-3, to PMA-2 and PMA-3 respectively. They have been in use since 2020.

Detailed payload manifest

A full listing of the cargo aboard the failed mission included: [13]

  • A Gorilla Suit [14]
  • Crew Supplies — 690 kilograms (1,520 lb)
  • Utilization — 573 kilograms (1,263 lb)
    • Canadian Space Agency: Vascular Echo Exercise Band
    • European Space Agency: Circadian Rhythms, KUBIK EBOXes, Interface Plate, EPO Peake, BioLab, Spheroids, EMCS RBLSS, Airway Mon., LiOH Cartridge
    • Japan Aerospace Exploration Agency: Atomization, Biological Rhythms, Multi-omics, Cell Mechanosensing 3, Plant Gravity Sensing 3, SAIBO L&M, Space Pup, Stem Cells, MSPR LM, Group Combustion Camera
    • US: 2 Polars, 6 DCBs and Ice Bricks, 1 MERLIN, FCF/HRF Resupply, HRP Resupply [Kits, MCT, Microbiome, Twin Studies], IMAX Camera, Meteor, Micro-9, MSG Resupply, NanoRacks Modules & 0.5 NRCSD #7, Universal Battery Charger, Veg-03, Microbial Observatory-1, Microchannel Diffusion Experiment, Wetlab RNA Smartcycler, SCK, Story Time, MELFI TDR Batteries
  • Computer Resources — 36 kilograms (79 lb)
    • Projector Screen, Sidekick, OCT Laptop & Power Supply, 32GB MicroSD Cards, Generic USB Cables, Power Modules and Card Readers, Preloaded T61p Hard Drives, CD Storage Container, Network Attached Storage Devices, XF305 Camcorders, RS-422 Adapter Cables
  • Vehicle Hardware — 462 kilograms (1,019 lb)
    • CHECS CMS: HRM Watches, Bench Lock Studs, Glenn Harness for Kelly, Kopra and Peake
    • CHECS EHS: CO2 Monitoring Assemblies, Filter Assemblies, CSA-CP/CDM Battery Assemblies, SIECE Cartridge Assemblies, Water Kit, Petri Dish Packets
    • CHECS HMS: IMAKs, Oral Med Packs
    • C&T: C2V2 Communications Unit (and HTV-5 Unit Data Converter)
    • ECLSS: 3 Pretreat Tanks, Filter Inserts, 9 KTOs, UPA FCPA, CDRS ASV, IMV Valve, Wring Collector, Water Sampling Kits, OGS ACTEX Filter, ARFTA Brine Filter Assemblies, O2/N2 Pressure Sensor, NORS O2 Tank, **3 PBA Assemblies, 2 MF Beds, 2 Urine Receptacles, Toilet Paper Packages, H
      2
      Sensor, Ammonia Cartridge Bag, PTU XFER Hose
    • EPS: 2 Avionics Restart Cables
    • Makita Drill, PWD Filter, N3 Bulkhead Connectors, Yellow/Red Adapters, IWIS Plates, 6.0 & 4.0 Waste Xfer Bags, BEAM Ground Straps, JEM Stowage Wire Kit
  • EVA Hardware — 167 kilograms (368 lb)
    • SEMU, REBA, EMU Ion Filters (4), Equipment Tethers, Gas Grap, EMU Mirrors, Crew Lock Bags, SEMU arms/legs
    • Lindgren/Yui ECOKs & CCAs, Lindgren LCVG
    • Kelly LCVG, Padalka EMU Gloves
  • Russian Cargo
    • Russian Segment Torque Wrench
  • Unpressurized Cargo — 526 kilograms (1,160 lb)

The mission would have transported more than 4,000 pounds (1,800 kg) of supplies and experiments to the International Space Station including the Meteor Composition Determination investigation which would have observed meteors entering the Earth's atmosphere by taking high resolution photos and videos. The Center for the Advancement of Science in Space had arranged for it to carry more than 30 student research projects to the station including experiments dealing with pollination in microgravity as well as an experiment to evaluate a sunlight blocking form of plastic. [5]

CRS-7 would have brought a pair of modified Microsoft HoloLenses to the International Space Station as part of Project Sidekick. [16] [17]

Planned post-launch flight test

The Of Course I Still Love You floating landing platform prior to the launch SpaceX ASDS moving into position for CRS-7 launch (18610429514).png
The Of Course I Still Love You floating landing platform prior to the launch

After the second stage separation, SpaceX planned to conduct a flight test and attempt to return the Falcon 9's nearly empty first stage through the atmosphere and land it on autonomous spaceport drone ship Of Course I Still Love You. [5] [18]

This would have been SpaceX's third attempt to land the booster on a floating platform after earlier tests in January 2015 and April 2015 were not successful. The boosters were fitted with a variety of technologies to facilitate the flight test, including grid fins and landing legs to facilitate the post-mission test. [18] [19] [20]

See also

Related Research Articles

<span class="mw-page-title-main">Cygnus (spacecraft)</span> Uncrewed cargo spacecraft developed by Orbital Sciences

Cygnus is an expendable American cargo spacecraft developed by Orbital Sciences Corporation but manufactured and launched by Northrop Grumman Space Systems as part of NASA's Commercial Resupply Services (CRS) program. It is usually launched by Northrop Grumman's Antares rocket from the Wallops Flight Facility, although three flights were on ULA's Atlas V and three are planned for SpaceX's Falcon 9, in both cases launching from Cape Canaveral Space Force Station. It transports supplies to the International Space Station (ISS) following the retirement of the American Space Shuttle. Since August 2000, ISS resupply missions have been regularly flown by the Russian Progress spacecraft, as well as by the European Automated Transfer Vehicle, and the Japanese H-II Transfer Vehicle. With the Cygnus spacecraft and the SpaceX Dragon, NASA seeks to increase its partnerships with domestic commercial aviation and aeronautics industry.

<span class="mw-page-title-main">Commercial Resupply Services</span> NASA program for delivery of cargo to the ISS

Commercial Resupply Services (CRS) are a series of flights awarded by NASA for the delivery of cargo and supplies to the International Space Station (ISS) on commercially operated spacecraft. The first CRS contracts were signed in 2008 and awarded $1.6 billion to SpaceX for twelve cargo Dragon and $1.9 billion to Orbital Sciences for eight Cygnus flights, covering deliveries to 2016. The Falcon 9 and Antares rockets were also developed under the CRS program to deliver cargo spacecraft to the ISS.

<span class="mw-page-title-main">SpaceX CRS-2</span> 2013 American resupply spaceflight to the ISS

SpaceX CRS-2, also known as SpX-2, was the fourth flight for SpaceX's uncrewed Dragon cargo spacecraft, the fifth and final flight for the company's two-stage Falcon 9 v1.0 launch vehicle, and the second SpaceX operational mission contracted to NASA under a Commercial Resupply Services (CRS-1) contract.

<span class="mw-page-title-main">SpaceX CRS-8</span> 2016 American spaceflight to the ISS

SpaceX CRS-8, also known as SpX-8, was a Commercial Resupply Service mission to the International Space Station (ISS) which was launched on April 8, 2016, at 20:43 UTC. It was the 23rd flight of a Falcon 9 rocket, the tenth flight of a Dragon cargo spacecraft and the eighth operational mission contracted to SpaceX by NASA under the Commercial Resupply Services program. The capsule carried over 3,100 kilograms (6,800 lb) of cargo to the ISS including the Bigelow Expandable Activity Module (BEAM), a prototype inflatable space habitat delivered in the vehicle's trunk, which was attached to the station and, as of May 2022, is expected to remain so for five more full years of in-orbit viability tests.

<span class="mw-page-title-main">SpaceX CRS-4</span> 2014 American resupply spaceflight to the ISS

SpaceX CRS-4, also known as SpX-4, was a Commercial Resupply Service mission to the International Space Station (ISS), contracted to NASA, which was launched on 21 September 2014 and arrived at the space station on 23 September 2014. It was the sixth flight for SpaceX's uncrewed Dragon cargo spacecraft, and the fourth SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract. The mission brought equipment and supplies to the space station, including the first 3D printer to be tested in space, a device to measure wind speed on Earth, and small satellites to be launched from the station. It also brought 20 mice for long-term research aboard the ISS.

<span class="mw-page-title-main">SpaceX CRS-5</span> 2015 American resupply spaceflight to the ISS

SpaceX CRS-5, also known as SpX-5, was a Commercial Resupply Service mission to the International Space Station (ISS), conducted by SpaceX for NASA, and was launched on 10 January 2015 and ended on 11 February 2015. It was the seventh flight for SpaceX's uncrewed Dragon cargo spacecraft and the fifth SpaceX operational mission contracted to NASA under an ISS resupply services contract.

<span class="mw-page-title-main">SpaceX CRS-6</span> 2015 American resupply spaceflight to the ISS

SpaceX CRS-6, also known as SpX-6, was a Commercial Resupply Service mission to the International Space Station, contracted to NASA. It was the eighth flight for SpaceX's uncrewed Dragon cargo spacecraft and the sixth SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract. It was docked to the International Space Station from 17 April to 21 May 2015.

<span class="mw-page-title-main">SpaceX Dragon 2</span> 2020s class of partially reusable spacecraft

Dragon 2 is a class of partially reusable spacecraft developed, manufactured, and operated by American space company SpaceX, primarily for flights to the International Space Station (ISS). SpaceX also launches private missions, such as Inspiration4 and Axiom Space Missions. There are two variants of the Dragon spacecraft: Crew Dragon, a spacecraft capable of ferrying four crewmembers, and Cargo Dragon, a replacement for the original Dragon 1 used to carry freight to and from space. The spacecraft consists of a reusable space capsule and an expendable trunk module. The spacecraft launches atop a Falcon 9 Block 5 rocket and the capsule returns to Earth through splashdown. It has proven to be the most cost effective spacecraft in history to be used by NASA.

<span class="mw-page-title-main">International Docking Adapter</span>

The International Docking Adapter (IDA) is a spacecraft docking system adapter developed to convert APAS-95 to support docking with spacecraft that implement the International Docking System Standard. The IDA uses NASA Docking System (NDS) hardware. An IDA was permanently installed on each of the International Space Station's (ISS) two open Pressurized Mating Adapters (PMAs), both of which are connected to the Harmony module.

<span class="mw-page-title-main">SpaceX CRS-9</span> 2016 American resupply spaceflight to the ISS

SpaceX CRS-9, also known as SpX-9, is a Commercial Resupply Service mission to the International Space Station which launched on 18 July 2016. The mission was contracted by NASA and is operated by SpaceX using a Dragon capsule.

<span class="mw-page-title-main">SpaceX CRS-12</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-12, also known as SpX-12, was a Commercial Resupply Services mission to the International Space Station launched on 14 August 2017. The mission was contracted by NASA and was flown by SpaceX using a new Dragon capsule. The Falcon 9 rocket's reusable first stage performed a controlled landing on Landing Zone 1 (LZ1) at Cape Canaveral Air Force Station. After delivering more than 2,900 kilograms (6,400 lb) of cargo, the Dragon spacecraft returned to Earth on 17 September 2017.

<span class="mw-page-title-main">SpaceX CRS-13</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-13, also known as SpX-13, was a Commercial Resupply Service mission to the International Space Station launched on 15 December 2017. The mission was contracted by NASA and is flown by SpaceX. It was the second mission to successfully reuse a Dragon capsule, previously flown on CRS-6. The first stage of the Falcon 9 Full Thrust rocket was the previously flown, "flight-proven" core from CRS-11. The first stage returned to land at Cape Canaveral's Landing Zone 1 after separation of the first and second stage.

<span class="mw-page-title-main">SpaceX CRS-14</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-14, also known as SpX-14, was a Commercial Resupply Service mission to the International Space Station launched on 2 April 2018. The mission was contracted by NASA and was flown by SpaceX. This mission reused the Falcon 9 first stage booster previously flown on CRS-12 and the Dragon capsule flown on CRS-8.

<span class="mw-page-title-main">SpaceX CRS-15</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-15, also known as SpX-15, was a Commercial Resupply Service mission to the International Space Station launched 29 June 2018 aboard a Falcon 9 rocket. The mission was contracted by NASA and flown by SpaceX.

<span class="mw-page-title-main">SpaceX CRS-16</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-16, also known as SpX-16, was a Commercial Resupply Service mission to the International Space Station launched on 5 December 2018 aboard a Falcon 9 launch vehicle. The mission was contracted by NASA and is flown by SpaceX.

<span class="mw-page-title-main">SpaceX CRS-18</span> 2019 American resupply spaceflight to the ISS

SpaceX CRS-18, also known as SpX-18, was SpaceX's 18th flight to the International Space Station under the Commercial Resupply Services program for NASA. It was launched on 25 July 2019 aboard a Falcon 9 rocket.

<span class="mw-page-title-main">SpaceX CRS-19</span> 2019 American resupply spaceflight to the ISS

SpaceX CRS-19, also known as SpX-19, was a Commercial Resupply Service mission to the International Space Station. The mission is contracted by NASA and was flown by SpaceX on a Falcon 9 rocket.

<span class="mw-page-title-main">SpaceX Dragon 1</span> Partially reusable cargo space capsule

Dragon, also known as Dragon 1 or Cargo Dragon, was a class of fourteen partially reusable cargo spacecraft developed by SpaceX, an American private space transportation company. The spacecraft flew 23 missions between 2010 and 2020. Dragon was launched into orbit by the company's Falcon 9 launch vehicle to resupply the International Space Station (ISS).

<span class="mw-page-title-main">SpaceX CRS-25</span> 2022 American resupply spaceflight to the ISS

SpaceX CRS-25, also known as SpX-25, was a Commercial Resupply Service mission (CRS) to the International Space Station (ISS) that was launched on 15 July 2022. The mission was contracted by NASA and was flown by SpaceX using their reusable spacecraft, the Cargo Dragon. The vehicle delivered supplies to the crew aboard the ISS along with multiple pieces of equipment that will be used to conduct multiple research investigations aboard the ISS.

<span class="mw-page-title-main">SpaceX CRS-28</span> 2023 American resupply spaceflight to the ISS

SpaceX CRS-28, also known as SpX-28, is a Commercial Resupply Service mission to the International Space Station (ISS) launched on 5 June 2023. The mission was contracted by NASA and flown by SpaceX using Cargo Dragon C208. It was the eighth flight for SpaceX under NASA's CRS Phase 2.

References

  1. Smith, Marcia S. (June 28, 2015). "Pressurization Event in Second Stage Likely Cause of SpaceX CRS-7 Failure". Space Policy Online. Retrieved April 22, 2016.
  2. "Unmanned SpaceX rocket explodes after Florida launch". BBC News. June 28, 2015. Retrieved June 28, 2015.
  3. "Worldwide Launch Schedule". SpaceflightNow. Retrieved June 26, 2015.
  4. "NASA Opens Media Accreditation for Next SpaceX Station Resupply Launch". NASA. May 20, 2015. Retrieved May 27, 2015.
  5. 1 2 3 4 Speck, Emilee (June 25, 2015). "SpaceX resupply launch, barge landing attempt set for Sunday". Orlando Sentinel . Archived from the original on June 26, 2015. Retrieved June 26, 2015.
  6. Bergin, Chris (July 27, 2015). "Saving Spaceship Dragon – Software to provide contingency chute deploy". NASASpaceFlight.com . Retrieved April 6, 2018.
  7. "CRS-7 Investigation Update". SpaceX. July 20, 2015. Retrieved August 7, 2015.
  8. "CRS-7 INVESTIGATION UPDATE". SpaceX. July 20, 2015. Archived from the original on July 21, 2015. Retrieved June 15, 2020.
  9. "NASA Independent Review Team SpaceX CRS-7 Accident Investigation Report Public Summary" (PDF). NASA. March 12, 2018. Retrieved March 23, 2018.
  10. "Status of Human Exploration and Operations Mission Directorate (HEO)" (PDF). NASA. July 29, 2013. Retrieved March 19, 2014.
  11. Hartman, Dan (July 23, 2012). "International Space Station Program Status" (PDF). NASA. Retrieved August 10, 2012.
  12. Lupo, Chris (June 14, 2010). "NDS Configuration and Requirements Changes since Nov 2010" (PDF). NASA. Archived from the original (PDF) on August 14, 2011. Retrieved August 22, 2011.
  13. Clark, Stephen (June 29, 2015). "SpaceX failure adds another kink in station supply chain". Spaceflight Now. Retrieved April 28, 2016.
  14. Herbst, Diane (January 17, 2022). "Astronaut Scott Kelly Reveals Real Story Behind Video of Him in Gorilla Suit Aboard Space Station". People Magazine. Retrieved May 12, 2024.
  15. Knapton, Sarah (June 21, 2015). "Britain's first official astronaut to enjoy fine dining on space mission". The Telegraph. Retrieved April 28, 2016.
  16. Alfano, Andrea (June 25, 2015). "HoloLens Is Going To Space As Sidekick In A Joint Project By NASA And Microsoft". Tech Times. Retrieved June 26, 2015.
  17. Bass, Dina (June 25, 2015). "NASA to Use HoloLens on Space Station". Bloomberg. Retrieved June 26, 2015.
  18. 1 2 Gebhardt, Chris; Bergin, Chris (June 24, 2015). "World launch markets look toward rocket reusability". NASASpaceFlight.com. Retrieved June 26, 2015.
  19. Bergin, Chris (April 3, 2015). "SpaceX preparing for a busy season of missions and test milestones". NASASpaceFlight.com. Retrieved April 4, 2015.
  20. Graham, William (April 13, 2015). "SpaceX Falcon 9 scrubs CRS-6 Dragon launch due to weather". NASASpaceFlight.com. Retrieved June 26, 2015.