Split-quaternion

Last updated
Split-quaternion multiplication
× 1 i j k
1 1 i j k
i i −1 k −j
j j −k 1 −i
k k j i 1

In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers.

Contents

After introduction in the 20th century of coordinate-free definitions of rings and algebras, it was proved that the algebra of split-quaternions is isomorphic to the ring of the 2×2 real matrices. So the study of split-quaternions can be reduced to the study of real matrices, and this may explain why there are few mentions of split-quaternions in the mathematical literature of the 20th and 21st centuries.

Definition

The split-quaternions are the linear combinations (with real coefficients) of four basis elements 1, i, j, k that satisfy the following product rules:

i2 = −1,
j2 = 1,
k2 = 1,
ij = k = −ji.

By associativity, these relations imply

jk = −i = −kj,
ki = j = −ik,

and also ijk = 1.

So, the split-quaternions form a real vector space of dimension four with {1, i, j, k} as a basis. They form also a noncommutative ring, by extending the above product rules by distributivity to all split-quaternions.

Let consider the square matrices

They satisfy the same multiplication table as the corresponding split-quaternions. As these matrices form a basis of the two-by-two matrices, the unique linear function that maps 1, i, j, k to (respectively) induces an algebra isomorphism from the split-quaternions to the two-by-two real matrices.

The above multiplication rules imply that the eight elements 1, i, j, k, −1, −i, −j, −k form a group under this multiplication, which is isomorphic to the dihedral group D4, the symmetry group of a square. In fact, if one considers a square whose vertices are the points whose coordinates are 0 or 1, the matrix is the clockwise rotation of the quarter of a turn, is the symmetry around the first diagonal, and is the symmetry around the x axis.

Properties

Like the quaternions introduced by Hamilton in 1843, they form a four dimensional real associative algebra. But like the real algebra of 2×2 matrices – and unlike the real algebra of quaternions – the split-quaternions contain nontrivial zero divisors, nilpotent elements, and idempotents. (For example, 1/2(1 + j) is an idempotent zero-divisor, and i − j is nilpotent.) As an algebra over the real numbers, the algebra of split-quaternions is isomorphic to the algebra of 2×2 real matrices by the above defined isomorphism.

This isomorphism allows identifying each split-quaternion with a 2×2 matrix. So every property of split-quaternions corresponds to a similar property of matrices, which is often named differently.

The conjugate of a split-quaternion q = w + xi + yj + zk, is q = wxi − yj − zk. In term of matrices, the conjugate is the cofactor matrix obtained by exchanging the diagonal entries and changing the sign of the other two entries.

The product of a split-quaternion with its conjugate is the isotropic quadratic form:

which is called the norm of the split-quaternion or the determinant of the associated matrix.

The real part of a split-quaternion q = w + xi + yj + zk is w = (q + q)/2. It equals the trace of associated matrix.

The norm of a product of two split-quaternions is the product of their norms. Equivalently, the determinant of a product of matrices is the product of their determinants.

This means that split-quaternions and 2×2 matrices form a composition algebra. As there are nonzero split-quaternions having a zero norm, split-quaternions form a "split composition algebra" – hence their name.

A split-quaternion with a nonzero norm has a multiplicative inverse, namely q/N(q). In terms of matrices, this is equivalent to the Cramer rule that asserts that a matrix is invertible if and only its determinant is nonzero, and, in this case, the inverse of the matrix is the quotient of the cofactor matrix by the determinant.

The isomorphism between split-quaternions and 2×2 matrices shows that the multiplicative group of split-quaternions with a nonzero norm is isomorphic with and the group of split quaternions of norm 1 is isomorphic with

Representation as complex matrices

There is a representation of the split-quaternions as a unital associative subalgebra of the 2×2 matrices with complex entries. This representation can be defined by the algebra homomorphism that maps a split-quaternion w + xi + yj + zk to the matrix

Here, i (italic) is the imaginary unit, not to be confused with the split quaternion basis element i (upright roman).

The image of this homomorphism is the matrix ring formed by the matrices of the form

where the superscript denotes a complex conjugate.

This homomorphism maps respectively the split-quaternions i, j, k on the matrices

The proof that this representation is an algebra homomorphism is straightforward but requires some boring computations, which can be avoided by starting from the expression of split-quaternions as 2×2 real matrices, and using matrix similarity. Let S be the matrix

Then, applied to the representation of split-quaternions as 2×2 real matrices, the above algebra homomorphism is the matrix similarity.

It follows almost immediately that for a split quaternion represented as a complex matrix, the conjugate is the matrix of the cofactors, and the norm is the determinant.

With the representation of split quaternions as complex matrices. the matrices of quaternions of norm 1 are exactly the elements of the special unitary group SU(1,1). This is used for in hyperbolic geometry for describing hyperbolic motions of the Poincaré disk model. [1]

Generation from split-complex numbers

Split-quaternions may be generated by modified Cayley–Dickson construction [2] similar to the method of L. E. Dickson and Adrian Albert. for the division algebras C, H, and O. The multiplication rule

is used when producing the doubled product in the real-split cases. The doubled conjugate so that

If a and b are split-complex numbers and split-quaternion

then

Stratification

In this section, the real subalgebras generated by a single split-quaternion are studied and classified.

Let p = w + xi + yj + zk be a split-quaternion. Its real part is w = 1/2(p + p*). Let q = pw = 1/2(pp*) be its nonreal part. One has q* = –q, and therefore It follows that p2 is a real number if and only p is either a real number (q = 0 and p = w) or a purely nonreal split quaternion (w = 0 and p = q).

The structure of the subalgebra generated by p follows straightforwardly. One has

and this is a commutative algebra. Its dimension is two except if p is real (in this case, the subalgebra is simply ).

The nonreal elements of whose square is real have the form aq with

Three cases have to be considered, which are detailed in the next subsections.

Nilpotent case

With above notation, if (that is, if q is nilpotent), then N(q) = 0, that is, This implies that there exist w and t in such that 0 ≤ t < 2π and

This is a parametrization of all split-quaternions whose nonreal part is nilpotent.

This is also a parameterization of these subalgebras by the points of a circle: the split-quaternions of the form form a circle; a subalgebra generated by a nilpotent element contains exactly one point of the circle; and the circle does not contain any other point.

The algebra generated by a nilpotent element is isomorphic to and to the plane of dual numbers.

Decomposable case

Hyperboloid of two sheets, source of imaginary units HyperboloidOfTwoSheets.svg
Hyperboloid of two sheets, source of imaginary units

This is the case where N(q) > 0. Letting one has

It follows that 1/nq belongs to the hyperboloid of two sheets of equation Therefore, there are real numbers n, t, u such that 0 ≤ t < 2π and

This is a parametrization of all split-quaternions whose nonreal part has a positive norm.

This is also a parameterization of the corresponding subalgebras by the pairs of opposite points of a hyperboloid of two sheets: the split-quaternions of the form form a hyperboloid of two sheets; a subalgebra generated by a split-quaternion with a nonreal part of positive norm contains exactly two opposite points on this hyperboloid, one on each sheet; and the hyperboloid does not contain any other point.

The algebra generated by a split-quaternion with a nonreal part of positive norm is isomorphic to and to the field of complex numbers.

Indecomposable case

Hyperboloid of one sheet, source of hyperbolic units.
(the vertical axis is called x in the article) HyperboloidOfOneSheet.PNG
Hyperboloid of one sheet, source of hyperbolic units.
(the vertical axis is called x in the article)

This is the case where N(q) < 0. Letting one has

It follows that 1/nq belongs to the hyperboloid of one sheet of equation y2 + z2x2 = 1. Therefore, there are real numbers n, t, u such that 0 ≤ t < 2π and

This is a parametrization of all split-quaternions whose nonreal part has a negative norm.

This is also a parameterization of the corresponding subalgebras by the pairs of opposite points of a hyperboloid of one sheet: the split-quaternions of the form form a hyperboloid of one sheet; a subalgebra generated by a split-quaternion with a nonreal part of negative norm contains exactly two opposite points on this hyperboloid; and the hyperboloid does not contain any other point.

The algebra generated by a split-quaternion with a nonreal part of negative norm is isomorphic to and to the ring of split-complex numbers. It is also isomorphic (as an algebra) to by the mapping defined by

Stratification by the norm

As seen above, the purely nonreal split-quaternions of norm –1, 1 and 0 form respectively a hyperboloid of one sheet, a hyperboloid of two sheets and a circular cone in the space of non real quaternions.

These surfaces are pairwise asymptote and do not intersect. Their complement consist of six connected regions:

This stratification can be refined by considering split-quaternions of a fixed norm: for every real number n ≠ 0 the purely nonreal split-quaternions of norm n form an hyperboloid. All these hyperboloids are asymptote to the above cone, and none of these surfaces intersect any other. As the set of the purely nonreal split-quaternions is the disjoint union of these surfaces, this provides the desired stratification.

Colour space

Split quaternions have been applied to colour balance [3] The model refers to the Jordan algebra of symmetric matrices representing the algebra. The model reconciles trichromacy with Hering's opponency and uses the Cayley–Klein model of hyperbolic geometry for chromatic distances.

Historical notes

The coquaternions were initially introduced (under that name) [4] in 1849 by James Cockle in the LondonEdinburghDublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 Bibliography [5] of the Quaternion Society.

Alexander Macfarlane called the structure of split-quaternion vectors an exspherical system when he was speaking at the International Congress of Mathematicians in Paris in 1900. [6] Macfarlane considered the "hyperboloidal counterpart to spherical analysis" in a 1910 article "Unification and Development of the Principles of the Algebra of Space" in the Bulletin of the Quaternion Society. [7]

The unit sphere was considered in 1910 by Hans Beck. [8] For example, the dihedral group appears on page 419. The split-quaternion structure has also been mentioned briefly in the Annals of Mathematics . [9] [10]

Synonyms

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory.

<span class="mw-page-title-main">Hyperboloid</span> Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Quaternion group</span> Non-abelian group of order eight

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe.

In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse of integral operators in 1903. When referring to a matrix, the term pseudoinverse, without further specification, is often used to indicate the Moore–Penrose inverse. The term generalized inverse is sometimes used as a synonym for pseudoinverse.

In algebra, a split complex number is based on a hyperbolic unitj satisfying A split-complex number has two real number components x and y, and is written The conjugate of z is Since the product of a number z with its conjugate is an isotropic quadratic form.

In abstract algebra, the algebra of hyperbolic quaternions is a nonassociative algebra over the real numbers with elements of the form

In abstract algebra, in particular in the theory of nondegenerate quadratic forms on vector spaces, the structures of finite-dimensional real and complex Clifford algebras for a nondegenerate quadratic form have been completely classified. In each case, the Clifford algebra is algebra isomorphic to a full matrix ring over R, C, or H, or to a direct sum of two copies of such an algebra, though not in a canonical way. Below it is shown that distinct Clifford algebras may be algebra-isomorphic, as is the case of Cl1,1(R) and Cl2,0(R), which are both isomorphic as rings to the ring of two-by-two matrices over the real numbers.

In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing.

In abstract algebra, the biquaternions are the numbers w + xi + yj + zk, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:

In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form , where is a unitary matrix and is a positive semi-definite Hermitian matrix, both square and of the same size.

In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.

<span class="mw-page-title-main">Hyperboloid model</span> Model of n-dimensional hyperbolic geometry

In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S+ of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m-planes are represented by the intersections of (m+1)-planes passing through the origin in Minkowski space with S+ or by wedge products of m vectors. Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the n-sphere is embedded in (n+1)-dimensional Euclidean space.

<span class="mw-page-title-main">Classical group</span>

In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

<span class="mw-page-title-main">Exponential map (Lie theory)</span>

In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.

References

  1. Karzel, Helmut & Günter Kist (1985) "Kinematic Algebras and their Geometries", in Rings and Geometry, R. Kaya, P. Plaumann, and K. Strambach editors, pp. 437509, esp 449,50, D. Reidel ISBN   90-277-2112-2
  2. Kevin McCrimmon (2004) A Taste of Jordan Algebras, page 64, Universitext, Springer ISBN   0-387-95447-3 MR 2014924
  3. Michel Berthier, Nicoletta Prencipe & Edouardo Provenzi (2023) Split quaternions for perceptual white balance @ HAL
  4. James Cockle (1849), On Systems of Algebra involving more than one Imaginary, Philosophical Magazine (series 3) 35: 434,5, link from Biodiversity Heritage Library
  5. A. Macfarlane (1904) Bibliography of Quaternions and Allied Systems of Mathematics, from Cornell University Historical Math Monographs, entries for James Cockle, pp. 17–18
  6. A. Macfarlane (1900) Application of space analysis to curvilinear coordinates Archived 2014-08-10 at the Wayback Machine , Proceedings of the International Congress of Mathematicians, Paris, page 306, from International Mathematical Union
  7. A. Macfarlane (1910) "Unification and Development of the Principles of the Algebra of Space" via Internet Archive.
  8. Hans Beck (1910) Ein Seitenstück zur Mobius'schen Geometrie der Kreisverwandschaften, Transactions of the American Mathematical Society 11
  9. A. A. Albert (1942), "Quadratic Forms permitting Composition", Annals of Mathematics 43:161 to 77
  10. Valentine Bargmann (1947), "Irreducible unitary representations of the Lorentz Group", Annals of Mathematics 48: 568640
  11. Rosenfeld, B.A. (1988) A History of Non-Euclidean Geometry, page 389, Springer-Verlag ISBN   0-387-96458-4
  12. Isaak Yaglom (1968) Complex Numbers in Geometry, page 24, Academic Press

Further reading