Steroid hormone

Last updated
Steroid hormone
Drug class
Estradiol.svg
Estradiol, an important estrogen steroid hormone in both women and men.
Class identifiers
Synonyms Adrenal steroid; Gonadal steroid
UseVarious
Biological target Steroid hormone receptors
Chemical class Steroidal; Nonsteroidal
In Wikidata

A steroid hormone is a steroid that acts as a hormone. Steroid hormones can be grouped into two classes: corticosteroids (typically made in the adrenal cortex, hence cortico-) and sex steroids (typically made in the gonads or placenta). Within those two classes are five types according to the receptors to which they bind: glucocorticoids and mineralocorticoids (both corticosteroids) and androgens, estrogens, and progestogens (sex steroids). [1] [2] Vitamin D derivatives are a sixth closely related hormone system with homologous receptors. They have some of the characteristics of true steroids as receptor ligands.

Contents

Steroid hormones help control metabolism, inflammation, immune functions, salt and water balance, development of sexual characteristics, and the ability to withstand injury and illness. The term steroid describes both hormones produced by the body and artificially produced medications that duplicate the action for the naturally occurring steroids. [3] [4] [5]

Synthesis

Steroidogenesis with enzymes and intermediates. Steroidogenesis.svg
Steroidogenesis with enzymes and intermediates.

The natural steroid hormones are generally synthesized from cholesterol in the gonads and adrenal glands. These forms of hormones are lipids. They can pass through the cell membrane as they are fat-soluble, [7] and then bind to steroid hormone receptors (which may be nuclear or cytosolic depending on the steroid hormone) to bring about changes within the cell. Steroid hormones are generally carried in the blood, bound to specific carrier proteins such as sex hormone-binding globulin or corticosteroid-binding globulin. Further conversions and catabolism occurs in the liver, in other "peripheral" tissues, and in the target tissues.

Production rates, secretion rates, clearance rates, and blood levels of major sex hormones
SexSex hormoneReproductive
phase
Blood
production rate
Gonadal
secretion rate
Metabolic
clearance rate
Reference range (serum levels)
SI unitsNon-SI units
Men Androstenedione
2.8 mg/day1.6 mg/day2200 L/day2.8–7.3 nmol/L80–210 ng/dL
Testosterone
6.5 mg/day6.2 mg/day950 L/day6.9–34.7 nmol/L200–1000 ng/dL
Estrone
150 μg/day110 μg/day2050 L/day37–250 pmol/L10–70 pg/mL
Estradiol
60 μg/day50 μg/day1600 L/day<37–210 pmol/L10–57 pg/mL
Estrone sulfate
80 μg/dayInsignificant167 L/day600–2500 pmol/L200–900 pg/mL
Women Androstenedione
3.2 mg/day2.8 mg/day2000 L/day3.1–12.2 nmol/L89–350 ng/dL
Testosterone
190 μg/day60 μg/day500 L/day0.7–2.8 nmol/L20–81 ng/dL
Estrone Follicular phase110 μg/day80 μg/day2200 L/day110–400 pmol/L30–110 pg/mL
Luteal phase260 μg/day150 μg/day2200 L/day310–660 pmol/L80–180 pg/mL
Postmenopause40 μg/dayInsignificant1610 L/day22–230 pmol/L6–60 pg/mL
Estradiol Follicular phase90 μg/day80 μg/day1200 L/day<37–360 pmol/L10–98 pg/mL
Luteal phase250 μg/day240 μg/day1200 L/day699–1250 pmol/L190–341 pg/mL
Postmenopause6 μg/dayInsignificant910 L/day<37–140 pmol/L10–38 pg/mL
Estrone sulfate Follicular phase100 μg/dayInsignificant146 L/day700–3600 pmol/L250–1300 pg/mL
Luteal phase180 μg/dayInsignificant146 L/day1100–7300 pmol/L400–2600 pg/mL
Progesterone Follicular phase2 mg/day1.7 mg/day2100 L/day0.3–3 nmol/L0.1–0.9 ng/mL
Luteal phase25 mg/day24 mg/day2100 L/day19–45 nmol/L6–14 ng/mL
Notes and sources
Notes: "The concentration of a steroid in the circulation is determined by the rate at which it is secreted from glands, the rate of metabolism of precursor or prehormones into the steroid, and the rate at which it is extracted by tissues and metabolized. The secretion rate of a steroid refers to the total secretion of the compound from a gland per unit time. Secretion rates have been assessed by sampling the venous effluent from a gland over time and subtracting out the arterial and peripheral venous hormone concentration. The metabolic clearance rate of a steroid is defined as the volume of blood that has been completely cleared of the hormone per unit time. The production rate of a steroid hormone refers to entry into the blood of the compound from all possible sources, including secretion from glands and conversion of prohormones into the steroid of interest. At steady state, the amount of hormone entering the blood from all sources will be equal to the rate at which it is being cleared (metabolic clearance rate) multiplied by blood concentration (production rate = metabolic clearance rate × concentration). If there is little contribution of prohormone metabolism to the circulating pool of steroid, then the production rate will approximate the secretion rate." Sources: See template.

Synthetic steroids and sterols

A variety of synthetic steroids and sterols have also been contrived. Most are steroids, but some nonsteroidal molecules can interact with the steroid receptors because of a similarity of shape. Some synthetic steroids are weaker or stronger than the natural steroids whose receptors they activate. [8]

Some examples of synthetic steroid hormones:

Some steroid antagonists:

Transport

Free hormone hypothesis 2 Free Hormone Hypothesis 2.jpg
Free hormone hypothesis 2

Steroid hormones are transported through the blood by being bound to carrier proteins—serum proteins that bind them and increase the hormones' solubility in water. Some examples are sex hormone-binding globulin (SHBG), corticosteroid-binding globulin, and albumin. [9] Most studies say that hormones can only affect cells when they are not bound by serum proteins. In order to be active, steroid hormones must free themselves from their blood-solubilizing proteins and either bind to extracellular receptors, or passively cross the cell membrane and bind to nuclear receptors. This idea is known as the free hormone hypothesis. This idea is shown in Figure 1 to the right.

This shows a possible pathway through which steroid hormones are endocytosed and proceed to affect cells via a genomic pathway. Endocytosis of Steroid Hormones.jpg
This shows a possible pathway through which steroid hormones are endocytosed and proceed to affect cells via a genomic pathway.

One study has found that these steroid-carrier complexes are bound by megalin, a membrane receptor, and are then taken into cells via endocytosis. One possible pathway is that once inside the cell these complexes are taken to the lysosome, where the carrier protein is degraded and the steroid hormone is released into the cytoplasm of the target cell. The hormone then follows a genomic pathway of action. This process is shown in Figure 2 to the right. [10] The role of endocytosis in steroid hormone transport is not well understood and is under further investigation.

In order for steroid hormones to cross the lipid bilayer of cells, they must overcome energetic barriers that would prevent their entering or exiting the membrane. Gibbs free energy is an important concept here. These hormones, which are all derived from cholesterol, have hydrophilic functional groups at either end and hydrophobic carbon backbones. When steroid hormones are entering membranes free energy barriers exist when the functional groups are entering the hydrophobic interior of membrane, but it is energetically favorable for the hydrophobic core of these hormones to enter lipid bilayers. These energy barriers and wells are reversed for hormones exiting membranes. Steroid hormones easily enter and exit the membrane at physiologic conditions. They have been shown experimentally to cross membranes near a rate of 20 μm/s, depending on the hormone. [11]

Though it is energetically more favorable for hormones to be in the membrane than in the ECF or ICF, they do in fact leave the membrane once they have entered it. This is an important consideration because cholesterol—the precursor to all steroid hormones—does not leave the membrane once it has embedded itself inside. The difference between cholesterol and these hormones is that cholesterol is in a much larger negative Gibb's free energy well once inside the membrane, as compared to these hormones. This is because the aliphatic tail on cholesterol has a very favorable interaction with the interior of lipid bilayers. [11]

Mechanisms of action and effects

There are many different mechanisms through which steroid hormones affect their target cells. All of these different pathways can be classified as having either a genomic effect or a non-genomic effect. Genomic pathways are slow and result in altering transcription levels of certain proteins in the cell; non-genomic pathways are much faster.

Flowchart showing the binding of a steroid hormone to a target cell 1803 Binding of Lipid-Soluble Hormones.jpg
Flowchart showing the binding of a steroid hormone to a target cell

Genomic pathways

The first identified mechanisms of steroid hormone action were the genomic effects. [12] In this pathway, the free hormones first pass through the cell membrane because they are fat soluble. [7] In the cytoplasm, the steroid may or may not undergo an enzyme-mediated alteration such as reduction, hydroxylation, or aromatization. Then the steroid binds to a specific steroid hormone receptor, also known as a nuclear receptor, which is a large metalloprotein. Upon steroid binding, many kinds of steroid receptors dimerize: two receptor subunits join together to form one functional DNA-binding unit that can enter the cell nucleus. Once in the nucleus, the steroid-receptor ligand complex binds to specific DNA sequences and induces transcription of its target genes. [4] [13] [14] [12]

Non-genomic pathways

Because non-genomic pathways include any mechanism that is not a genomic effect, there are various non-genomic pathways. However, all of these pathways are mediated by some type of steroid hormone receptor found at the plasma membrane. [15] Ion channels, transporters, G-protein coupled receptors (GPCR), and membrane fluidity have all been shown to be affected by steroid hormones. [11] Of these, GPCR linked proteins are the most common. For more information on these proteins and pathways, visit the steroid hormone receptor page.

See also

Related Research Articles

<span class="mw-page-title-main">Adrenal gland</span> Endocrine gland

The adrenal glands are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which produces steroid hormones and an inner medulla. The adrenal cortex itself is divided into three main zones: the zona glomerulosa, the zona fasciculata and the zona reticularis.

<span class="mw-page-title-main">Hormone</span> Biological signalling molecule

A hormone is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required for the correct development of animals, plants and fungi. Due to the broad definition of a hormone, numerous kinds of molecules can be classified as hormones. Among the substances that can be considered hormones, are eicosanoids, steroids, amino acid derivatives, protein or peptides, and gases.

<span class="mw-page-title-main">Steroid</span> Any organic compound having sterane as a core structure

A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes that alter membrane fluidity; and as signaling molecules. Hundreds of steroids are found in plants, animals and fungi. All steroids are manufactured in cells from the sterols lanosterol (opisthokonts) or cycloartenol (plants). Lanosterol and cycloartenol are derived from the cyclization of the triterpene squalene.

<span class="mw-page-title-main">Androgen</span> Any steroid hormone that promotes male characteristics

An androgen is any natural or synthetic steroid hormone that regulates the development and maintenance of male characteristics in vertebrates by binding to androgen receptors. This includes the embryological development of the primary male sex organs, and the development of male secondary sex characteristics at puberty. Androgens are synthesized in the testes, the ovaries, and the adrenal glands.

<span class="mw-page-title-main">Adrenal cortex</span> Cortex of the adrenal gland

The adrenal cortex is the outer region and also the largest part of an adrenal gland. It is divided into three separate zones: zona glomerulosa, zona fasciculata and zona reticularis. Each zone is responsible for producing specific hormones. It is also a secondary site of androgen synthesis.

<span class="mw-page-title-main">Glucocorticoid</span> Class of corticosteroids

Glucocorticoids are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every vertebrate animal cell. The name "glucocorticoid" is a portmanteau and is composed from its role in regulation of glucose metabolism, synthesis in the adrenal cortex, and its steroidal structure.

<span class="mw-page-title-main">Mineralocorticoid</span> Group of corticosteroids

Mineralocorticoids are a class of corticosteroids, which in turn are a class of steroid hormones. Mineralocorticoids are produced in the adrenal cortex and influence salt and water balances. The primary mineralocorticoid is aldosterone.

A hormone receptor is a receptor molecule that binds to a specific chemical messenger. Hormone receptors are a wide family of proteins made up of receptors for thyroid and steroid hormones, retinoids and Vitamin D, and a variety of other receptors for various ligands, such as fatty acids and prostaglandins. Hormone receptors are of mainly two classes. Receptors for peptide hormones tend to be cell surface receptors built into the plasma membrane of cells and are thus referred to as trans membrane receptors. An example of this is Actrapid. Receptors for steroid hormones are usually found within the protoplasm and are referred to as intracellular or nuclear receptors, such as testosterone. Upon hormone binding, the receptor can initiate multiple signaling pathways, which ultimately leads to changes in the behavior of the target cells.

Corticotropes are basophilic cells in the anterior pituitary that produce pro-opiomelanocortin (POMC) which undergoes cleavage to adrenocorticotropin (ACTH), β-lipotropin (β-LPH), and melanocyte-stimulating hormone (MSH). These cells are stimulated by corticotropin releasing hormone (CRH) and make up 15–20% of the cells in the anterior pituitary. The release of ACTH from the corticotropic cells is controlled by CRH, which is formed in the cell bodies of parvocellular neurosecretory cells within the paraventricular nucleus of the hypothalamus and passes to the corticotropes in the anterior pituitary via the hypophyseal portal system. Adrenocorticotropin hormone stimulates the adrenal cortex to release glucocorticoids and plays an important role in the stress response.

<span class="mw-page-title-main">Lipoid congenital adrenal hyperplasia</span> Medical condition

Lipoid congenital adrenal hyperplasia is an endocrine disorder that is an uncommon and potentially lethal form of congenital adrenal hyperplasia (CAH). It arises from defects in the earliest stages of steroid hormone synthesis: the transport of cholesterol into the mitochondria and the conversion of cholesterol to pregnenolone—the first step in the synthesis of all steroid hormones. Lipoid CAH causes mineralocorticoid deficiency in affected infants and children. Male infants are severely undervirilized causing their external genitalia to look feminine. The adrenals are large and filled with lipid globules derived from cholesterol.

<span class="mw-page-title-main">Lipid raft</span>

The plasma membranes of cells contain combinations of glycosphingolipids, cholesterol and protein receptors organised in glycolipoprotein lipid microdomains termed lipid rafts. Their existence in cellular membranes remains somewhat controversial. It has been proposed that they are specialized membrane microdomains which compartmentalize cellular processes by serving as organising centers for the assembly of signaling molecules, allowing a closer interaction of protein receptors and their effectors to promote kinetically favorable interactions necessary for the signal transduction. Lipid rafts influence membrane fluidity and membrane protein trafficking, thereby regulating neurotransmission and receptor trafficking. Lipid rafts are more ordered and tightly packed than the surrounding bilayer, but float freely within the membrane bilayer. Although more common in the cell membrane, lipid rafts have also been reported in other parts of the cell, such as the Golgi apparatus and lysosomes.

Steroid hormone receptors are found in the nucleus, cytosol, and also on the plasma membrane of target cells. They are generally intracellular receptors and initiate signal transduction for steroid hormones which lead to changes in gene expression over a time period of hours to days. The best studied steroid hormone receptors are members of the nuclear receptor subfamily 3 (NR3) that include receptors for estrogen and 3-ketosteroids. In addition to nuclear receptors, several G protein-coupled receptors and ion channels act as cell surface receptors for certain steroid hormones.

<span class="mw-page-title-main">Sex hormone-binding globulin</span> Human glycoprotein that binds to androgens and estrogens

Sex hormone-binding globulin (SHBG) or sex steroid-binding globulin (SSBG) is a glycoprotein that binds to androgens and estrogens. When produced by the Sertoli cells in the seminiferous tubules of the testis, it is called androgen-binding protein (ABP).

<span class="mw-page-title-main">Methylprednisolone</span> Corticosteroid medication

Methylprednisolone is a synthetic glucocorticoid, primarily prescribed for its anti-inflammatory and immunosuppressive effects. It is either used at low doses for chronic illnesses or used concomitantly at high doses during acute flares. Methylprednisolone and its derivatives can be administered orally or parenterally.

In biology, cell signaling or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals. Cell signaling can occur over short or long distances, and as a result can be classified as autocrine, juxtacrine, intracrine, paracrine, or endocrine. Signaling molecules can be synthesized from various biosynthetic pathways and released through passive or active transports, or even from cell damage.

The steroidogenic acute regulatory protein, commonly referred to as StAR (STARD1), is a transport protein that regulates cholesterol transfer within the mitochondria, which is the rate-limiting step in the production of steroid hormones. It is primarily present in steroid-producing cells, including theca cells and luteal cells in the ovary, Leydig cells in the testis and cell types in the adrenal cortex.

<span class="mw-page-title-main">Cholesterol side-chain cleavage enzyme</span> Mammalian protein found in Homo sapiens

Cholesterol side-chain cleavage enzyme is commonly referred to as P450scc, where "scc" is an acronym for side-chain cleavage. P450scc is a mitochondrial enzyme that catalyzes conversion of cholesterol to pregnenolone. This is the first reaction in the process of steroidogenesis in all mammalian tissues that specialize in the production of various steroid hormones.

Membrane steroid receptors (mSRs), also called extranuclear steroid receptors, are a class of cell surface receptors activated by endogenous steroids that mediate rapid, non-genomic signaling via modulation of intracellular signaling cascades. mSRs are another means besides classical nuclear steroid hormone receptors (SHRs) for steroids to mediate their biological effects. SHRs can produce slow genomic responses or rapid, non-genomic responses in the case of mSRs.

Membrane glucocorticoid receptors (mGRs) are a group of receptors which bind and are activated by glucocorticoids such as cortisol and corticosterone, as well as certain exogenous glucocorticoids such as dexamethasone. Unlike the classical nuclear glucocorticoid receptor (GR), which mediates its effects via genomic mechanisms, mGRs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. The identities of the mGRs have yet to be fully elucidated, but are thought to include membrane-associated classical GRs as well as yet-to-be-characterized G protein-coupled receptors (GPCRs). Rapid effects of dexamethasone were found not be reversed by the GR antagonist mifepristone, indicating additional receptors besides just the classical GR.

Membrane mineralocorticoid receptors (mMRs) or membrane aldosterone receptors are a group of receptors which bind and are activated by mineralocorticoids such as aldosterone. Unlike the classical nuclear mineralocorticoid receptor (MR), which mediates its effects via genomic mechanisms, mMRs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. The identities of the mMRs have yet to be fully elucidated, but are thought to include membrane-associated classical MRs as well as yet-to-be-characterized G protein-coupled receptors (GPCRs). Rapid effects of aldosterone were found not be reversed by the MR antagonist spironolactone, indicating additional receptors besides just the classical MR. It has been estimated that as much as 50% of the rapid actions of aldosterone are mediated by mMRs that are not the classical MR, based on findings of insensitivity to classical mR antagonists.

References

  1. "Steroid hormones - Latest research and news | Nature". www.nature.com. Retrieved 2021-12-06.
  2. "steroid hormone | Definition, Classification, & Function | Britannica". www.britannica.com. Retrieved 2021-12-06.
  3. Funder JW, Krozowski Z, Myles K, Sato A, Sheppard KE, Young M (1997). "Mineralocorticoid receptors, salt, and hypertension". Recent Prog Horm Res. 52: 247–260. PMID   9238855.
  4. 1 2 Gupta BBP, Lalchhandama K (2002). "Molecular mechanisms of glucocorticoid action" (PDF). Current Science. 83 (9): 1103–1111.
  5. Frye CA (2009). "Steroids, reproductive endocrine function, and affect. A review". Minerva Ginecol. 61 (6): 541–562. PMID   19942840.
  6. Häggström, Mikael; Richfield, David (2014). "Diagram of the pathways of human steroidogenesis". WikiJournal of Medicine. 1 (1). doi: 10.15347/wjm/2014.005 . ISSN   2002-4436.
  7. 1 2 Linda J. Heffner; Danny J. Schust (2010). The Reproductive System at a Glance . John Wiley and Sons. pp.  16–. ISBN   978-1-4051-9452-5 . Retrieved 28 November 2010.
  8. Nahar L, Sarker SD, Turner AB (2007). "A review on synthetic and natural steroid dimers: 1997-2006". Curr Med Chem. 14 (12): 1349–1370. doi:10.2174/092986707780597880. PMID   17504217.
  9. Adams JS (2005). ""Bound" to work: The free hormone hypothesis revisited". Cell. 122 (5): 647–9. doi: 10.1016/j.cell.2005.08.024 . PMID   16143095.
  10. Hammes A (2005). "Role of endocytosis in cellular uptake of sex steroids". Cell. 122 (5): 751–62. doi: 10.1016/j.cell.2005.06.032 . PMID   16143106.
  11. 1 2 3 Oren I (2004). "Free diffusion of steroid hormones across biomembranes: A simplex search with implicit solvent model calculations". Biophysical Journal. 87 (2): 768–79. Bibcode:2004BpJ....87..768O. doi:10.1529/biophysj.103.035527. PMC   1304487 . PMID   15298886.
  12. 1 2 Rousseau G (2013). "Fifty years ago: The quest for steroid hormone receptors". Molecular and Cellular Endocrinology. 375 (1–2): 10–3. doi:10.1016/j.mce.2013.05.005. PMID   23684885. S2CID   24346074.
  13. Moore FL, Evans SJ (1995). "Steroid hormones use non-genomic mechanisms to control brain functions and behaviors: a review of evidence". Brain Behav Evol. 54 (4): 41–50. doi:10.1159/000006610. PMID   10516403. S2CID   1998076.
  14. Marcinkowska E, Wiedłocha A (2002). "Steroid signal transduction activated at the cell membrane: from plants to animals". Acta Biochim Pol. 49 (9): 735–745. doi: 10.18388/abp.2002_3782 . PMID   12422243.
  15. Wang C, Liu Y, Cao JM (2014). "G protein-coupled receptors: Extranuclear mediators for the non-genomic actions of steroids". International Journal of Molecular Sciences. 15 (9): 15412–25. doi: 10.3390/ijms150915412 . PMC   4200746 . PMID   25257522.

Further reading