Tetradecahedron

Last updated
A tetradecahedron with D2d-symmetry, existing in the Weaire-Phelan structure Space-filling tetrakaidecahedron.png
A tetradecahedron with D2d-symmetry, existing in the Weaire–Phelan structure

A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces.

Contents

A tetradecahedron is sometimes called a tetrakaidecahedron. [1] [2] No difference in meaning is ascribed. [3] [4] The Greek word kai means 'and'. There is evidence that mammalian epidermal cells are shaped like flattened tetrakaidecahedra, an idea first suggested by Lord Kelvin. [5] The polyhedron can also be found in soap bubbles and in sintered ceramics, due to its ability to tesselate in 3D space. [6] [7]

Convex

There are 1,496,225,352 topologically distinct convex tetradecahedra, excluding mirror images, having at least 9 vertices. [8] (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

Examples

An incomplete list of forms includes:

Tetradecahedra having all regular polygonal faces (all exist in irregular-faced forms as well):

Tetradecahedra having at least one irregular face:

See also

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

<span class="mw-page-title-main">Johnson solid</span> 92 non-uniform convex polyhedra, with each face a regular polygon

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides ; it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a "Johnson solid".

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Rhombicuboctahedron</span> Archimedean solid with 26 faces

In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at each one. If all the rectangles are themselves square, it is an Archimedean solid. The polyhedron has octahedral symmetry, like the cube and octahedron. Its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids.

<span class="mw-page-title-main">Truncated octahedron</span> Archimedean solid

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

<span class="mw-page-title-main">Truncated cube</span> Archimedean solid with 14 regular faces

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces, 36 edges, and 24 vertices.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Trapezohedron</span> Polyhedron made of congruent kites arranged radially

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.

<span class="mw-page-title-main">Pentagonal bipyramid</span> 13th Johnson solid; two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is third of the infinite set of face-transitive bipyramids, and the 13th Johnson solid. Each bipyramid is the dual of a uniform prism.

<span class="mw-page-title-main">Gyrobifastigium</span> 26th Johnson solid (8 faces)

In geometry, the gyrobifastigium is the 26th Johnson solid. It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Hexagonal prism</span> Prism with a 6-sided base

In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.

<span class="mw-page-title-main">Decahedron</span> Polyhedron with 10 faces

In geometry, a decahedron is a polyhedron with ten faces. There are 32300 topologically distinct decahedra, and none are regular, so this name does not identify a specific type of polyhedron except for the number of faces.

<span class="mw-page-title-main">Truncated trapezohedron</span> Polyhedron made by cutting off a trapezohedrons polar vertices

In geometry, an n-gonaltruncated trapezohedron is a polyhedron formed by a n-gonal trapezohedron with n-gonal pyramids truncated from its two polar axis vertices. If the polar vertices are completely truncated (diminished), a trapezohedron becomes an antiprism.

In geometry, a near-miss Johnson solid is a strictly convex polyhedron whose faces are close to being regular polygons but some or all of which are not precisely regular. Thus, it fails to meet the definition of a Johnson solid, a polyhedron whose faces are all regular, though it "can often be physically constructed without noticing the discrepancy" between its regular and irregular faces. The precise number of near-misses depends on how closely the faces of such a polyhedron are required to approximate regular polygons.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Enneahedron</span> Polyhedron with 9 faces

In geometry, an enneahedron is a polyhedron with nine faces. There are 2606 types of convex enneahedron, each having a different pattern of vertex, edge, and face connections. None of them are regular.

<span class="mw-page-title-main">Elongated octahedron</span> Convex polyhedron with 8 faces

In geometry, an elongated octahedron is a polyhedron with 8 faces, 14 edges, and 8 vertices.

References

  1. Weisstein, Eric W. "Tetradecahedron". MathWorld . Retrieved 16 October 2023.
  2. Tetradecahedron at the Wayback Machine (archived 18 July 2011)
  3. Weisstein, Eric W. "Tetrakaidecahedron". MathWorld . Retrieved 16 October 2023.
  4. Tetrakaidecahedron at the Wayback Machine (archived 28 September 2011)
  5. Yokouchi, Mariko; Atsugi, Toru; Logtestijn, Mark van; Tanaka, Reiko J.; Kajimura, Mayumi; Suematsu, Makoto; Furuse, Mikio; Amagai, Masayuki; Kubo, Akiharu (2016). "Epidermal cell turnover across tight junctions based on Kelvin's tetrakaidecahedron cell shape". eLife. 5. doi:10.7554/eLife.19593. PMC   5127639 . PMID   27894419.
  6. "Most space Filling Structure in the World! – Tetradecahedron". Ardent Metallurgist. 2020-07-26. Retrieved 2022-11-15.
  7. Wey, Ming-Yen; Tseng, Hui-Hsin; Chiang, Chian-kai (2014-03-01). "Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α-Al2O3 support". Journal of Membrane Science. 453: 603–613. doi:10.1016/j.memsci.2013.11.039. ISSN   0376-7388.
  8. Counting polyhedra
  9. "New Pound Coin | the Royal Mint".