Tracing paper

Last updated
A roll of yellow tracing paper. Traceroll.JPG
A roll of yellow tracing paper.
Simulation of tracing paper transformation levels TRANSLUCENT SHEET.jpg
Simulation of tracing paper transformation levels
Samples of tracing paper Samples of TAKEYO tracing paper.jpg
Samples of tracing paper
Tracing paper roll GatewayTracingNewRoll.jpg
Tracing paper roll

Tracing paper is paper made to have low opacity, allowing light to pass through. Its origins date back to at least the 1300s where it was used by artists of the Italian Renaissance. [1] In the 1880s, tracing paper was produced en masse, used by architects, design engineers, and artists. [2] Tracing paper was key in creating drawings that could be copied precisely using the diazo copy process. [2] It then found many other uses. The original use for drawing and tracing was largely superseded by technologies that do not require diazo copying or manual copying (by tracing) of drawings.

Contents

The transparency of tracing paper is achieved by careful selection of the raw materials and the process used to create transparency. Cellulose fibre forms the basis of the paper, usually from wood species but also from cotton fibre. Often, paper contains other filler materials to enhance opacity and print quality. For tracing or translucent paper, it is necessary to remove any material which obstructs the transmission of light. [3]

Description

Tracing paper is paper made to have low opacity, allowing light to pass through. It is named as such for its ability for an image to be traced onto it. The modern version of tracing paper was developed for architects and design engineers to create drawings which could be copied precisely using the diazo copy process. [2]

When tracing paper is placed onto a picture, the picture is easily visible through the paper. Thus, it becomes easy to find edges in the picture and trace the image onto the tracing paper. Pure cellulose fiber is translucent, and it is the air trapped between fibers that makes paper opaque and look white. [3] If the fibers are refined and beaten until all the air is taken out, then the resulting sheet will be translucent. Translucent papers are dense and contain up to 10% moisture at 50% humidity.

Production

Tracing paper is usually made from sulfite pulp by reducing the fibres to a state of fine subdivision and hydrolysing them by very prolonged beating in water.

There are three main processes to manufacture this type of paper, as follows:

  1. Through mechanical 'refining' of the cellulose fibre to create a fibre which is highly fibrillated and gelatinous, so that in forming the sheet of paper, virtually all air is excluded from the internal structure of the paper. This method produces a very translucent and even looking paper over a range of areal densities from 42 to over 280 g/m2.
  2. By making a 'normal' sheet of paper and then filling the spaces between the fibres with a material that has the same refractive index as the cellulose. This was a common process adopted in the USA. The product was frequently called Vellum, although this terminology can refer to a wider range of special papers. Due to the relatively high cost, this method of manufacture has largely disappeared.
  3. As with 2, by making a normal sheet of paper, which is followed by immersing uncut and unloaded paper of good quality in sulfuric acid for a few seconds. The acid converts some of the cellulose into amyloid form having a gelatinous and impermeable character. When the treated paper is thoroughly washed and dried, the resultant product is much stronger than the original paper. Tracing paper is resistant to oil, grease and to a large extent impervious to water and gas.

The sizing in production will determine whether it is for laser printer or inkjet/offset printing.

Tracing paper may be uncoated or coated.[ further explanation needed ] Natural tracing paper for laser printing is usually uncoated.

The HS code for tracing paper is 4806.30. [4]

Tracing paper can be recycled and also can be made from up to 30% recycled fibre. [5]

Technical specifications

The follows are common standards for tracing paper[ citation needed ] though generally it is manufactured in densities over 60 g/m2:

Substance Density Humidity Roughness Translucent Tensile
strength
(mD)
Surface
alkali pH
ISO 536
[6]
(g/m2)
(kg/m3) ISO 287
[7]
(%)
ISO 8791-2 [8]
(ml/min)
ISO 2469 [9]
(%)
ISO 1974 [10]
(mN)
ISO 6588
[11] [12]
(pH)
421,200÷1,2357100-30079+/-5220-4406-7
531,200÷1,2357100-30077+/-5220-4406-7
631,220÷1,2507100-30075+/-5220-4406-7
731,220÷1,2507.5100-30075+/-5220-4406-7
831,220÷1,2507.5100-30075+/-5220-4406-7
931,220÷1,2507.5100-30075+/-5220-4406-7
1001,220÷1,2507.5100-30075+/-5220-4406-7
1121,220÷1,2508100-30073+/-5220-4406-7
1301,220÷1,2508100-30069+/-5220-4406-7
1501,220÷1,2508100-30065+/-5220-4406-7
1601,220÷1,2508100-30061+/-5220-4406-7
1701,220÷1,2508100-30059+/-5220-4406-7
1901,220÷1,2508100-30055+/-5220-4406-7
2001,220÷1,2508100-30053+/-5220-4406-7
2401,220÷1,2508100-30047+/-5220-4406-7
2801,220÷1,2508100-30045+/-5220-4406-7

Application

End products

Invitation square envelopes Newone - square fancy tracing paper envelope 01.jpg
Invitation square envelopes

See also

Schoellershammer multi color tracing paper Newone - multy color tracing paper.jpg
Schoellershammer multi color tracing paper

Related Research Articles

<span class="mw-page-title-main">Corrugated fiberboard</span> Composite paper material

Corrugated fiberboard or corrugated cardboard is a type of packaging material consisting of a fluted corrugated sheet and one or two flat linerboards. It is made on "flute lamination machines" or "corrugators" and is used for making corrugated boxes. The corrugated medium sheet and the linerboard(s) are made of kraft containerboard, a paperboard material usually over 0.25 millimetres (0.01 in) thick.

<span class="mw-page-title-main">Blueprint</span> Document reproduction created by using a contact print process on light-sensitive sheets

A blueprint is a reproduction of a technical drawing or engineering drawing using a contact print process on light-sensitive sheets. Introduced by Sir John Herschel in 1842, the process allowed rapid and accurate production of an unlimited number of copies. It was widely used for over a century for the reproduction of specification drawings used in construction and industry. The blueprint process was characterized by white lines on a blue background, a negative of the original. The process was not able to reproduce color or shades of grey.

<span class="mw-page-title-main">Pulp (paper)</span> Fibrous material used notably in papermaking

Pulp is a lignocellulosic fibrous material prepared by chemically or mechanically separating cellulose fibers from wood, fiber crops, waste paper, or rags. Mixed with water and other chemical or plant-based additives, pulp is the major raw material used in papermaking and the industrial production of other paper products.

<span class="mw-page-title-main">Paperboard</span> Thick paper-based material

Paperboard is a thick paper-based material. While there is no rigid differentiation between paper and paperboard, paperboard is generally thicker than paper and has certain superior attributes such as foldability and rigidity. According to ISO standards, paperboard is a paper with a grammage above 250 g/m2, but there are exceptions. Paperboard can be single- or multi-ply.

Wood fibres are usually cellulosic elements that are extracted from trees and used to make materials including paper.

<span class="mw-page-title-main">Paper machine</span> Fourdrinier Paper Manufacturing

A paper machine is an industrial machine which is used in the pulp and paper industry to create paper in large quantities at high speed. Modern paper-making machines are based on the principles of the Fourdrinier Machine, which uses a moving woven mesh to create a continuous paper web by filtering out the fibres held in a paper stock and producing a continuously moving wet mat of fibre. This is dried in the machine to produce a strong paper web.

<span class="mw-page-title-main">Pulp mill</span>

A pulp mill is a manufacturing facility that converts wood chips or other plant fiber sources into a thick fiber board which can be shipped to a paper mill for further processing. Pulp can be manufactured using mechanical, semi-chemical, or fully chemical methods. The finished product may be either bleached or non-bleached, depending on the customer requirements.

<span class="mw-page-title-main">Kraft paper</span> Paper or paperboard produced from chemical pulp produced in the kraft process

Kraft paper or kraft is paper or paperboard (cardboard) produced from chemical pulp produced in the kraft process.

Coated paper is paper that has been coated by a mixture of materials or a polymer to impart certain qualities to the paper, including weight, surface gloss, smoothness, or reduced ink absorbency. Various materials, including kaolinite, calcium carbonate, bentonite, and talc, can be used to coat paper for high-quality printing used in the packaging industry and in magazines.

<span class="mw-page-title-main">Inkjet paper</span> Paper designed for use with inkjet printers

Inkjet paper is a special fine paper designed for inkjet printers, typically classified by its weight, brightness and smoothness, and sometimes by its opacity.

<span class="mw-page-title-main">Architectural reprography</span>

Architectural reprography, the reprography of architectural drawings, covers a variety of technologies, media, and supports typically used to make multiple copies of original technical drawings and related records created by architects, landscape architects, engineers, surveyors, mapmakers and other professionals in building and engineering trades.

<span class="mw-page-title-main">Paper</span> Thin material for writing, printing, etc.

Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, rags, grasses, or other vegetable sources in water, draining the water through a fine mesh leaving the fibre evenly distributed on the surface, followed by pressing and drying. Although paper was originally made in single sheets by hand, almost all is now made on large machines—some making reels 10 metres wide, running at 2,000 metres per minute and up to 600,000 tonnes a year. It is a versatile material with many uses, including printing, painting, graphics, signage, design, packaging, decorating, writing, and cleaning. It may also be used as filter paper, wallpaper, book endpaper, conservation paper, laminated worktops, toilet tissue, currency, and security paper, or in a number of industrial and construction processes.

<span class="mw-page-title-main">Vulcanized fibre</span>

Vulcanized fibre or red fibre is a laminated plastic composed of only cellulose. The material is a tough, resilient, hornlike material that is lighter than aluminium, tougher than leather, and stiffer than most thermoplastics. The newer wood-laminating grade of vulcanized fibre is used to strengthen wood laminations used in skis, skateboards, support beams and as a sub-laminate under thin wood veneers.

Deinking is the industrial process of removing printing ink from paperfibers of recycled paper to make deinked pulp.

Woodfree uncoated paper (WFU), uncoated woodfree paper (UWF) or uncoated fine papers are manufactured using wood that has been processed into a chemical pulp that removes the lignin from the wood fibers and may also contain 5–25% fillers. Both softwood and hardwood chemical pulps are used and a minor part of mechanical pulp might be added. These paper grades are calendered.

Special fine paper is a classification of paper used for copying and digital printing.

Wood-free paper is paper created exclusively from chemical pulp rather than mechanical pulp. Chemical pulp is normally made from pulpwood, but is not considered wood as most of the lignin is removed and separated from the cellulose fibers during processing, whereas mechanical pulp retains most of its wood components and can therefore still be described as wood. Wood-free paper is not as susceptible to yellowing as paper containing mechanical pulp. Wood-free paper offers several environmental and economic benefits, including reduced deforestation, decreased energy consumption, and improved waste management.

The wet strength of paper and paperboard is a measure of how well the web of fibers holding the paper together can resist a force of rupture when the paper is wet. Wet strength is routinely expressed as the ratio of wet to dry tensile force at break.

Cardboard is a generic term for heavy paper-based products. The construction can range from a thick paper known as paperboard to corrugated fiberboard which is made of multiple plies of material. Natural cardboards can range from grey to light brown in color, depending on the specific product; dyes, pigments, printing, and coatings are available.

Hemp paper is paper varieties consisting exclusively or to a large extent from pulp obtained from fibers of industrial hemp. The products are mainly specialty papers such as cigarette paper, banknotes and technical filter papers. Compared to wood pulp, hemp pulp offers a four to five times longer fibre, a significantly lower lignin fraction as well as a higher tear resistance and tensile strength. Because the paper industry's processes have been optimized for wood as the feedstock, production costs currently are much higher than for paper from wood.

References

  1. d'Andrea Cennini, Cennino (June 1, 1954). The Craftsman's Handbook "Il Libro dell' Arte" (2nd ed.). Dover Publications.
  2. 1 2 3 Olcott Price, Lois (1995). "The History and Identification of Photo-Reproductive Processes Used for Architectural Drawings Prior to 1930". Topics in Photographic Preservation. 6: 41–42.
  3. 1 2 How is paper made translucent (grease proof, tracing paper)? PaperOnWeb
  4. "Paper and paperboard; articles of paper pulp, of paper or of paperboard". wcoomd.org.
  5. "Frequently Asked Questions | Arjoqiggins Creative Papers". arjowiggins-tracingpapers.com.
  6. "ISO 536:2012 – Paper and board -- Determination of grammage". iso.org.
  7. "ISO 287:2009 – Paper and board -- Determination of moisture content of a lot -- Oven-drying method". iso.org.
  8. "ISO 8791-2:2013 – Paper and board -- Determination of roughness/smoothness (air leak methods) -- Part 2: Bendtsen method". iso.org.
  9. "ISO 2469:2014 – Paper, board and pulps -- Measurement of diffuse radiance factor (diffuse reflectance factor)". iso.org.
  10. "ISO 1974:2012 – Paper -- Determination of tearing resistance -- Elmendorf method". iso.org.
  11. "ISO 6588-1:2012 – Paper, board and pulps -- Determination of pH of aqueous extracts -- Part 1: Cold extraction". iso.org.
  12. ISO 6588-2:2012 Paper, board and pulps -- Determination of pH of aqueous extracts -- Part 2: Hot extraction