Deinking

Last updated

Deinking is the industrial process of removing printing ink from paperfibers of recycled paper to make deinked pulp.

Contents

The key in the deinking process is the ability to detach ink from the fibers. This is achieved by a combination of mechanical action and chemical means. In Europe the most common process is froth flotation deinking.

Paper is one of the main targets for recycling. A concern about recycling wood pulp paper is that the fibers are degraded with each cycle and after being recycled 4–6 times the fibers become too short and weak to be useful in making paper. [1]

History

Before the invention of the paper machine in 1799 the most common fibre source was recycled fibres from used textiles, hence the name rag paper. The rags were from hemp, linen and cotton. It was not until the introduction of wood pulp in 1843 that paper production was independent of recycled materials. [2]

Recycling of used paper before the industrialisation of paper production, rag paper was recycled to make low-grade board. A process for removing printing inks from recycled paper was invented by German jurist Justus Claproth in 1774. [2] He practiced together with German paper producer Johann Engelhard Schmid. Today this method is called deinking.

First in the 1950s and 1960s the use of recycled fibres from paper made of wood pulp begun to increase, and was mainly used in packaging paper and paperboard. In the 1950s the froth flotation technique was adapted for deinking recycled paper. [3] Use of recovered paper increased in the 1970s mainly in graphic and hygienic papers, and accelerated in the 1980s. The annual growth in use of recovered paper increased by 6% between 1980 and 1996. The use of virgin fibres only increased 2% in the same period. In 1997 recovered paper production was 42% of the total paper production. [2]

Deinking process

Schematic layout of a deinking plant. Deinking (schematic layout).svg
Schematic layout of a deinking plant.

Sorting

Waste paper may contain a mixture of different paper types made of mixtures of different paperfibers. These must be sorted before processed. Broke (paper waste from paper production) is normally used directly in the papermachine.

Recycled paper can be used to make paper of the same or lower quality than it was originally. The sorted paper is baled and shipped to a papermill. The pulpmill uses waste paper grade according to the paper quality they want to make.

Debaling

The bales are opened and large foreign objects are sorted out on the conveyor belt to the pulper. Many extraneous materials are readily removed. Twine, strapping, etc. are removed from the hydropulper by a "ragger". Metal straps and staples can be screened out or removed by a magnet. Film-backed pressure-sensitive tape stays intact: the PSA adhesive and the backing are both removed together. [4]

Pulping

Pulpers are either batch, which uses a tub with a high shear rotor, or continuous, using a long, perforated drum. Drum pulpers are very expensive but have the advantage of not breaking up contaminants, thus giving cleaner end product.

The pulper chops the paper to smaller pieces; water and chemicals are added. Normally the pH is adjusted to 8.5 - 10.0. Normal deinking chemicals are:

After pulping, the mixture is a slurry. The slurry goes to screening.

Cleaning and screening

Centrifugal cleaning is spinning the pulp slurry in a cleaner, causing materials that are denser than pulp fibers to move outward and be rejected. Screens, with either slots or holes, are used to remove contaminants that are larger than pulp fibers.

Materials which are more difficult to remove include wax coatings on corrugated cartons and stickies , soft rubbery particles which can make deposits and contaminate the recycled paper. Stickies can originate from book bindings, hot melt adhesives, PSA adhesives from paper labels, laminating adhesives of reinforced gummed tapes, etc. [6] [7] [8]

Deinking stage

In the deinking stage the goal is to release and remove the hydrophobic contaminants from the recycled paper. The contaminants are mostly printing ink and stickies. Several processes are used, most commonly flotation or washing.

Flotation deinking

Diagram of a froth flotation cell. FlCell.PNG
Diagram of a froth flotation cell.

Froth flotation was adapted from the flotation process used in the mining industry in the 1960s. It is the most common deinking process in Europe used to recover recycled paper. Often most of the collector is added to the inlet of the flotation. The process temperatures are normally in the range 45 - 55 °C. Air is blown into the pulp suspension. The collector has affinity both to the ink particles and air bubbles, causing them to attach. The air bubbles lift the ink to the surface and form a thick froth that can be removed. Normally the setup is a two-stage system with 3, 4 or 5 flotation cells in series. [9] Flotation deinking is very effective in removing ink particles larger than about 10 μm.

Wash deinking

Wash deinking consists of a washing stage where dispersants are added to wash out the printing inks. When the pulp slurry is dewatered (thickened), the medium to fine particles are washed out. This process is most useful for removing particles smaller than about 30 μm, like water-based inks, fillers, coating particles, fines and micro stickies. This process is more common when making deinked pulp for tissue. The processing equipment are belt filters, pressure belt filters, disk filters and static filters. This stage is much more efficient than normal washing / dewatering stages.

Combined washing and flotation

High quality deinking of office wastes and other printing papers often commonly uses a combination of washing and flotation.

Enzymatic deinking

This method of deinking uses industrial or food grade enzymes in conjunction with flotation deinking to aid in the removal of inks in recycling mills. More efficient removal of ink increases fiber yield, decreases dirt count, and increases paper brightness. Often the use of enzymatic deinking helps mills reduce their bleach usage or use cheaper furnish.

Other deinking processes

Dissolved air flotation (DAF) is used by some mills in the deinking stage and will remove some ink and filler (ash); however, it is mainly used to clarify the process water.

Washing / dewatering

Washing / dewatering (thickening) is a filtration process. Small particles (< 5 μm) are removed by passing water through the pulp.

Bleaching

If white paper is desired, bleaching uses peroxides or hydrosulfites to increase the brightness of the pulp. The bleaching methods are similar for mechanical pulp, but the goal is to make the fiber brighter.

Papermaking

The deinked fiber is made into a new paper product in the same way as virgin wood fiber, see papermaking.

Byproducts

The unusable material left over, mainly ink, plastics, filler and short fibers, is called sludge. The sludge is buried in a landfill, burned to create energy at the paper mill or used as a fertilizer by local farmers.

Problems

Water based flexographic printing inks with particle sizes below 5 μm and poor solubility in alkaline conditions may cause problems in deinking, especially in the flotation stage. The solution is to use an extra acidic washing stage.

Temperature control is important as this affects the stickiness of stickies.

Additional issues arise when taking into account the number of chemicals potentially present in paper for recycling. Studies have indicated that paper might contain as many as 10,000 different chemicals, [10] fate of which in the deinking process still remains unknown. Polychlorinated biphenyls are often found in pigments which are used in newspaper and magazine paper. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Corrugated fiberboard</span> Composite paper material

Corrugated fiberboard, corrugated cardboard, or corrugated is a type of packaging material consisting of a fluted corrugated sheet and one or two flat linerboards. It is made on "flute lamination machines" or "corrugators" and is used for making corrugated boxes. The corrugated medium sheet and the linerboard(s) are made of kraft containerboard, a paperboard material usually over 0.25 millimetres (0.01 in) thick.

<span class="mw-page-title-main">Flexography</span> Form of printing process

Flexography is a form of printing process which utilizes a flexible relief plate. It is essentially a modern version of letterpress, evolved with high speed rotary functionality, which can be used for printing on almost any type of substrate, including plastic, metallic films, cellophane, and paper. It is widely used for printing on the non-porous substrates required for various types of food packaging.

<span class="mw-page-title-main">Pulp (paper)</span> Fibrous material used notably in papermaking

Pulp is a fibrous lignocellulosic material prepared by chemically, semi-chemically or mechanically producing cellulosic fibers from wood, fiber crops, waste paper, or rags. Mixed with water and other chemicals or plant-based additives, pulp is the major raw material used in papermaking and the industrial production of other paper products.

<span class="mw-page-title-main">Paperboard</span> Thick paper-based material

Paperboard is a thick paper-based material. While there is no rigid differentiation between paper and paperboard, paperboard is generally thicker than paper and has certain superior attributes such as foldability and rigidity. According to ISO standards, paperboard is a paper with a grammage above 250 g/m2, but there are exceptions. Paperboard can be single- or multi-ply.

<span class="mw-page-title-main">Paper machine</span> Industrial machine used in the pulp and paper industry

A paper machine is an industrial machine which is used in the pulp and paper industry to create paper in large quantities at high speed. Modern paper-making machines are based on the principles of the Fourdrinier Machine, which uses a moving woven mesh to create a continuous paper web by filtering out the fibres held in a paper stock and producing a continuously moving wet mat of fibre. This is dried in the machine to produce a strong paper web.

<span class="mw-page-title-main">Fiber crop</span> Plant grown for fiber

Fiber crops are field crops grown for their fibers, which are traditionally used to make paper, cloth, or rope.

<span class="mw-page-title-main">Paper recycling</span> Process by which waste paper is turned into new paper products

The recycling of paper is the process by which waste paper is turned into new paper products. It has a number of important benefits: It saves waste paper from occupying homes of people and producing methane as it breaks down. Because paper fibre contains carbon, recycling keeps the carbon locked up for longer and out of the atmosphere. Around two-thirds of all paper products in the US are now recovered and recycled, although it does not all become new paper. After repeated processing the fibres become too short for the production of new paper, which is why virgin fibre is frequently added to the pulp recipe.

<span class="mw-page-title-main">Froth flotation</span> Process for selectively separating of hydrophobic materials from hydrophilic

Froth flotation is a process for selectively separating hydrophobic materials from hydrophilic. This is used in mineral processing, paper recycling and waste-water treatment industries. Historically this was first used in the mining industry, where it was one of the great enabling technologies of the 20th century. It has been described as "the single most important operation used for the recovery and upgrading of sulfide ores". The development of froth flotation has improved the recovery of valuable minerals, such as copper- and lead-bearing minerals. Along with mechanized mining, it has allowed the economic recovery of valuable metals from much lower-grade ore than previously.

<span class="mw-page-title-main">Mineral processing</span> Process of separating commercially valuable minerals from their ores

Mineral processing is the process of separating commercially valuable minerals from their ores in the field of extractive metallurgy. Depending on the processes used in each instance, it is often referred to as ore dressing or ore milling.

<span class="mw-page-title-main">Kraft paper</span> Paper or paperboard produced from chemical pulp produced in the kraft process

Kraft paper or kraft is paper or paperboard (cardboard) produced from chemical pulp produced in the kraft process.

Coated paper is paper that has been coated by a mixture of materials or a polymer to impart certain qualities to the paper, including weight, surface gloss, smoothness, or reduced ink absorbency. Various materials, including kaolinite, calcium carbonate, bentonite, and talc, can be used to coat paper for high-quality printing used in the packaging industry and in magazines.

<span class="mw-page-title-main">Paper</span> Material for writing, printing, etc.

Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, rags, grasses, or other vegetable sources in water, draining the water through a fine mesh leaving the fibre evenly distributed on the surface, followed by pressing and drying. Although paper was originally made in single sheets by hand, almost all is now made on large machines—some making reels 10 metres wide, running at 2,000 metres per minute and up to 600,000 tonnes a year. It is a versatile material with many uses, including printing, painting, graphics, signage, design, packaging, decorating, writing, and cleaning. It may also be used as filter paper, wallpaper, book endpaper, conservation paper, laminated worktops, toilet tissue, currency, and security paper, or in a number of industrial and construction processes.

When recycling post-consumer paper, stickies are tacky substances contained in the paper pulp and process water systems of paper machines. Stickies have the potential to contaminate the components either within or around the equipment necessary in the Stages of Manufacturing that a Paper Mill follows in its Developed Process, but would have otherwise excluded it in its routine cleaning and maintenance procedures. Contaminations of paper that are classified as tacky are also called stickies. The main sources for stickies are recycled paper, waxes, and soft adhesives.

A vacuum ceramic filter is designed to separate liquids from solids for dewatering of ore concentrates purposes. The device consists of a rotator, slurry tank, ceramic filter plate, distributor, discharge scraper, cleaning device, frame, agitating device, pipe system, vacuum system, automatic acid dosing system, automatic lubricating system, valve and discharge chute. The operation and construction principle of vacuum ceramic filter resemble those of a conventional disc filter, but the filter medium is replaced by a finely porous ceramic disc. The disc material is inert, has a long operational life and is resistant to almost all chemicals. Performance can be optimized by taking into account all those factors which affect the overall efficiency of the separation process. Some of the variables affecting the performance of a vacuum ceramic filter include the solid concentration, speed rotation of the disc, slurry level in the feed basin, temperature of the feed slurry, and the pressure during dewatering stages and filter cake formation.

<span class="mw-page-title-main">Environmental effects of paper</span> Overview about the environmental effects of the paper production industry

The environmental effects of paper are significant, which has led to changes in industry and behaviour at both business and personal levels. With the use of modern technology such as the printing press and the highly mechanized harvesting of wood, disposable paper became a relatively cheap commodity, which led to a high level of consumption and waste. The rise in global environmental issues such as air and water pollution, climate change, overflowing landfills and clearcutting have all lead to increased government regulations. There is now a trend towards sustainability in the pulp and paper industry as it moves to reduce clear cutting, water use, greenhouse gas emissions, fossil fuel consumption and clean up its influence on local water supplies and air pollution.

The wet strength of paper and paperboard is a measure of how well the web of fibers holding the paper together can resist a force of rupture when the paper is wet. Wet strength is routinely expressed as the ratio of wet to dry tensile force at break.

<span class="mw-page-title-main">Paper chemicals</span> Chemicals used in paper manufacturing

Paper chemicals designate a group of chemicals that are used for paper manufacturing, or modify the properties of paper. These chemicals can be used to alter the paper in many ways, including changing its color and brightness, or by increasing its strength and resistance to water. The chemicals can be defined on basis of their usage in the process.

The surface chemistry of paper is responsible for many important paper properties, such as gloss, waterproofing, and printability. Many components are used in the paper-making process that affect the surface.

<span class="mw-page-title-main">Jameson cell</span> Machinery for processing minerals

The Jameson Cell is a high-intensity froth flotation cell that was invented by Laureate Professor Graeme Jameson of the University of Newcastle (Australia) and developed in conjunction with Mount Isa Mines Limited.

Snowflake Mill was a pulp mill and paper mill located in the US town of Snowflake, Arizona. The mill had two paper machines which produced 339,000 tonnes of newsprint and uncoated fine paper. It sourced its fiber from two deinking pulp lines. The mill had 293 employees as of 2014. Transport to and from the mill was carried out on the Apache Railway.

References

  1. "Paper Recycling Information Sheet". Waste Online. Archived from the original on October 18, 2007. Retrieved October 20, 2007.
  2. 1 2 3 Göttsching, Lothar; Pakarinen, Heikki (2000). "1". Recycled Fiber and Deinking. Papermaking Science and Technology. Vol. 7. Finland: Fapet Oy. pp. 12–14. ISBN   978-952-5216-07-3.
  3. Sixta, Herbert, ed. (2006). Handbook of Pulp. Vol. 2. Germany: Wiley-VCH. p. 1174. ISBN   978-3-527-30999-3.
  4. Jensen, Timothy (April 1999). "Packaging Tapes: To Recycle of Not". Adhesives and Sealants Council. Archived from the original on 2007-11-09. Retrieved 2007-11-06.
  5. WO 011717,Nellesen, Bernhard&Northfleet, Christina,"METHOD OF DEINKING",published 05.02.2004,issued 2004
  6. "Recycling Compatible Adhesives Standards". Tag and Label Manufacturers Institute. 2007. Archived from the original on 2007-11-09. Retrieved 2007-11-06.
  7. "Voluntary Standard for Repulping and Recycling Corrugated Fiberboard" (PDF). Corrugated Packaging Alliance. 2005. Archived from the original (PDF) on 2007-12-03. Retrieved 2007-11-06.
  8. Seiter, Pikulin (October 1998). "Environmentally benign USPS stamps" (PDF). TAPPI Pulping Conference. Archived from the original (PDF) on 2006-10-12. Retrieved 2007-11-08.
  9. Voith EcoCell flotation plant "Archived copy" (PDF). Archived from the original (PDF) on 2009-08-24. Retrieved 2009-01-08.{{cite web}}: CS1 maint: archived copy as title (link)
  10. Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas F. (2015). "Waste paper for recycling: Overview and identification of potentially critical substances" (PDF). Waste Management. 45: 134–142. Bibcode:2015WaMan..45..134P. doi:10.1016/j.wasman.2015.02.028. PMID   25771763. S2CID   205676176.
  11. Grossman, Elizabeth (2013-03-01). "Nonlegacy PCBs: Pigment Manufacturing By-Products Get a Second Look". Environmental Health Perspectives. 121 (3): a86–a93. doi:10.1289/ehp.121-a86. ISSN   0091-6765. PMC   3621189 . PMID   23454657.

Further reading