Transfer function

Last updated

In engineering, a transfer function (also known as system function [1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2] [3] [4] It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output (known as a transfer curve or characteristic curve). Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.

Contents

Dimensions and units of the transfer function model the output response of the device for a range of possible inputs. The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric current applied to the device; the transfer function of a photodetector might be the output voltage as a function of the luminous intensity of incident light of a given wavelength.

The term "transfer function" is also used in the frequency domain analysis of systems using transform methods, such as the Laplace transform; it is the amplitude of the output as a function of the frequency of the input signal. The transfer function of an electronic filter is the voltage amplitude at the output as a function of the frequency of a constant amplitude sine wave applied to the input. For optical imaging devices, the optical transfer function is the Fourier transform of the point spread function (a function of spatial frequency).

Linear time-invariant systems

Transfer functions are commonly used in the analysis of systems such as single-input single-output filters in signal processing, communication theory, and control theory. The term is often used exclusively to refer to linear time-invariant (LTI) systems. Most real systems have non-linear input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that LTI system theory is an acceptable representation of their input-output behavior.

Continuous-time

Descriptions are given in terms of a complex variable, . In many applications it is sufficient to set (thus ), which reduces the Laplace transforms with complex arguments to Fourier transforms with the real argument ω. This is common in applications primarily interested in the LTI system's steady-state response (often the case in signal processing and communication theory), not the fleeting turn-on and turn-off transient response or stability issues.

For continuous-time input signal and output , dividing the Laplace transform of the output, , by the Laplace transform of the input, , yields the system's transfer function :

which can be rearranged as:

Discrete-time

Discrete-time signals may be notated as arrays indexed by an integer (e.g. for input and for output). Instead of using the Laplace transform (which is better for continuous-time signals), discrete-time signals are dealt with using the z-transform (notated with a corresponding capital letter, like and ), so a discrete-time system's transfer function can be written as:

Direct derivation from differential equations

A linear differential equation with constant coefficients

where u and r are suitably smooth functions of t, and L is the operator defined on the relevant function space transforms u into r. That kind of equation can be used to constrain the output function u in terms of the forcing function r. The transfer function can be used to define an operator that serves as a right inverse of L, meaning that .

Solutions of the homogeneous constant-coefficient differential equation can be found by trying . That substitution yields the characteristic polynomial

The unhomogeneous case can be easily solved if the input function r is also of the form . By substituting , if we define

Other definitions of the transfer function are used, for example [5]

Gain, transient behavior and stability

A general sinusoidal input to a system of frequency may be written . The response of a system to a sinusoidal input beginning at time will consist of the sum of the steady-state response and a transient response. The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the differential equation. The transfer function for an LTI system may be written as the product:

where sPi are the N roots of the characteristic polynomial and will be the poles of the transfer function. In a transfer function with a single pole where , the Laplace transform of a general sinusoid of unit amplitude will be . The Laplace transform of the output will be , and the temporal output will be the inverse Laplace transform of that function:

The second term in the numerator is the transient response, and in the limit of infinite time it will diverge to infinity if σP is positive. For a system to be stable, its transfer function must have no poles whose real parts are positive. If the transfer function is strictly stable, the real parts of all poles will be negative and the transient behavior will tend to zero in the limit of infinite time. The steady-state output will be:

The frequency response (or "gain") G of the system is defined as the absolute value of the ratio of the output amplitude to the steady-state input amplitude:

which is the absolute value of the transfer function evaluated at . This result is valid for any number of transfer-function poles.

Signal processing

If is the input to a general linear time-invariant system, and is the output, and the bilateral Laplace transform of and is

The output is related to the input by the transfer function as

and the transfer function itself is

If a complex harmonic signal with a sinusoidal component with amplitude , angular frequency and phase , where arg is the argument

where

is input to a linear time-invariant system, the corresponding component in the output is:

In a linear time-invariant system, the input frequency has not changed; only the amplitude and phase angle of the sinusoid have been changed by the system. The frequency response describes this change for every frequency in terms of gain

and phase shift

The phase delay (the frequency-dependent amount of delay introduced to the sinusoid by the transfer function) is

The group delay (the frequency-dependent amount of delay introduced to the envelope of the sinusoid by the transfer function) is found by computing the derivative of the phase shift with respect to angular frequency ,

The transfer function can also be shown using the Fourier transform, a special case of bilateral Laplace transform where .

Common transfer-function families

Although any LTI system can be described by some transfer function, "families" of special transfer functions are commonly used:

Control engineering

In control engineering and control theory, the transfer function is derived with the Laplace transform. The transfer function was the primary tool used in classical control engineering. A transfer matrix can be obtained for any linear system to analyze its dynamics and other properties; each element of a transfer matrix is a transfer function relating a particular input variable to an output variable. A representation bridging state space and transfer function methods was proposed by Howard H. Rosenbrock, and is known as the Rosenbrock system matrix.

Imaging

In imaging, transfer functions are used to describe the relationship between the scene light, the image signal and the displayed light.

Non-linear systems

Transfer functions do not exist for many non-linear systems, such as relaxation oscillators; [6] however, describing functions can sometimes be used to approximate such nonlinear time-invariant systems.

See also

Related Research Articles

The bilinear transform is used in digital signal processing and discrete-time control theory to transform continuous-time system representations to discrete-time and vice versa.

Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity. In most cases these linear filters are also time invariant in which case they can be analyzed exactly using LTI system theory revealing their transfer functions in the frequency domain and their impulse responses in the time domain. Real-time implementations of such linear signal processing filters in the time domain are inevitably causal, an additional constraint on their transfer functions. An analog electronic circuit consisting only of linear components will necessarily fall in this category, as will comparable mechanical systems or digital signal processing systems containing only linear elements. Since linear time-invariant filters can be completely characterized by their response to sinusoids of different frequencies, they are sometimes known as frequency filters.

In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable . The transform has many applications in science and engineering, mostly as a tool for solving linear differential equations. In particular, it transforms ordinary differential equations into algebraic equations and convolution into multiplication. For suitable functions f, the Laplace transform is defined by the integral

In signal processing, group delay and phase delay are two related ways of describing how a signal's frequency components are delayed in time when passing through a linear time-invariant (LTI) system. Phase delay describes the time shift of a sinusoidal component. Group delay describes the time shift of the envelope of a wave packet, a "pack" or "group" of oscillations centered around one frequency that travel together, formed for instance by multiplying a sine wave by an envelope.

<span class="mw-page-title-main">Resonance</span> Tendency to oscillate at certain frequencies

Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its natural frequency. When this happens, the object or system absorbs energy from the external force and starts vibrating with a larger amplitude. Resonance can occur in various systems, such as mechanical, electrical, or acoustic systems, and it is often desirable in certain applications, such as musical instruments or radio receivers. However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases.

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.

<span class="mw-page-title-main">Bode plot</span> Graph of the frequency response of a control system

In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude of the frequency response, and a Bode phase plot, expressing the phase shift.

In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex valued frequency-domain representation.

A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.

Analog signal processing is a type of signal processing conducted on continuous analog signals by some analog means. "Analog" indicates something that is mathematically represented as a set of continuous values. This differs from "digital" which uses a series of discrete quantities to represent signal. Analog values are typically represented as a voltage, electric current, or electric charge around components in the electronic devices. An error or noise affecting such physical quantities will result in a corresponding error in the signals represented by such physical quantities.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

In control theory and signal processing, a linear, time-invariant system is said to be minimum-phase if the system and its inverse are causal and stable.

<span class="mw-page-title-main">Butterworth filter</span> Type of signal processing filter

The Butterworth filter is a type of signal processing filter designed to have a frequency response that is as flat as possible in the passband. It is also referred to as a maximally flat magnitude filter. It was first described in 1930 by the British engineer and physicist Stephen Butterworth in his paper entitled "On the Theory of Filter Amplifiers".

Infinite impulse response (IIR) is a property applying to many linear time-invariant systems that are distinguished by having an impulse response that does not become exactly zero past a certain point but continues indefinitely. This is in contrast to a finite impulse response (FIR) system, in which the impulse response does become exactly zero at times for some finite , thus being of finite duration. Common examples of linear time-invariant systems are most electronic and digital filters. Systems with this property are known as IIR systems or IIR filters.

<span class="mw-page-title-main">LC circuit</span> Electrical "resonator" circuit, consisting of inductive and capacitive elements with no resistance

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

In signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded.

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

A resistor–inductor circuit, or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source. It is one of the simplest analogue infinite impulse response electronic filters.

Classical control theory is a branch of control theory that deals with the behavior of dynamical systems with inputs, and how their behavior is modified by feedback, using the Laplace transform as a basic tool to model such systems.

<span class="mw-page-title-main">Phase stretch transform</span>

Phase stretch transform (PST) is a computational approach to signal and image processing. One of its utilities is for feature detection and classification. PST is related to time stretch dispersive Fourier transform. It transforms the image by emulating propagation through a diffractive medium with engineered 3D dispersive property. The operation relies on symmetry of the dispersion profile and can be understood in terms of dispersive eigenfunctions or stretch modes. PST performs similar functionality as phase-contrast microscopy, but on digital images. PST can be applied to digital images and temporal data. It is a physics-based feature engineering algorithm.

References

  1. Bernd Girod, Rudolf Rabenstein, Alexander Stenger, Signals and systems, 2nd ed., Wiley, 2001, ISBN   0-471-98800-6 p. 50
  2. M. A. Laughton; D.F. Warne (27 September 2002). Electrical Engineer's Reference Book (16 ed.). Newnes. pp. 14/9–14/10. ISBN   978-0-08-052354-5.
  3. E. A. Parr (1993). Logic Designer's Handbook: Circuits and Systems (2nd ed.). Newness. pp. 65–66. ISBN   978-1-4832-9280-9.
  4. Ian Sinclair; John Dunton (2007). Electronic and Electrical Servicing: Consumer and Commercial Electronics. Routledge. p. 172. ISBN   978-0-7506-6988-7.
  5. Birkhoff, Garrett; Rota, Gian-Carlo (1978). Ordinary differential equations. New York: John Wiley & Sons. ISBN   978-0-471-05224-1.[ page needed ]
  6. Valentijn De Smedt, Georges Gielen and Wim Dehaene (2015). Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks. Springer. p. 47. ISBN   978-3-319-09003-0.