Trinomial tree

Last updated

The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option pricing. [1] For fixed income and interest rate derivatives see Lattice model (finance)#Interest rate derivatives.

Contents

Formula

Under the trinomial method, the underlying stock price is modeled as a recombining tree, where, at each node the price has three possible paths: an up, down and stable or middle path. [2] These values are found by multiplying the value at the current node by the appropriate factor , or where

(the structure is recombining)

and the corresponding probabilities are:

.

In the above formulae: is the length of time per step in the tree and is simply time to maturity divided by the number of time steps; is the risk-free interest rate over this maturity; is the corresponding volatility of the underlying; is its corresponding dividend yield. [3]

As with the binomial model, these factors and probabilities are specified so as to ensure that the price of the underlying evolves as a martingale, while the moments  considering node spacing and probabilities  are matched to those of the log-normal distribution [4] (and with increasing accuracy for smaller time-steps). Note that for , , and to be in the interval the following condition on has to be satisfied .

Once the tree of prices has been calculated, the option price is found at each node largely as for the binomial model, by working backwards from the final nodes to the present node (). The difference being that the option value at each non-final node is determined based on the three as opposed to two  later nodes and their corresponding probabilities. [5]

If the length of time-steps is taken as an exponentially distributed random variable and interpreted as the waiting time between two movements of the stock price then the resulting stochastic process is a birth–death process. The resulting model is soluble and there exist analytic pricing and hedging formulae for various options.

Application

The trinomial model is considered [6] to produce more accurate results than the binomial model when fewer time steps are modelled, and is therefore used when computational speed or resources may be an issue. For vanilla options, as the number of steps increases, the results rapidly converge, and the binomial model is then preferred due to its simpler implementation. For exotic options the trinomial model (or adaptations) is sometimes more stable and accurate, regardless of step-size.

See also

Related Research Articles

Normal distribution Probability distribution

In statistics, a normal distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes; Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.

Fokker–Planck equation Partial differential equation

In statistical mechanics, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of derivatives such as options to a change in underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the risk sensitivities, risk measures or hedge parameters.

Short-rate model

A short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written .

Ornstein–Uhlenbeck process Stochastic process modeling random walk with friction

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

Lattice Boltzmann methods Class of computational fluid dynamics methods

Lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method, is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

Cox–Ingersoll–Ross model

In mathematical finance, the Cox–Ingersoll–Ross (CIR) model describes the evolution of interest rates. It is a type of "one factor model" as it describes interest rate movements as driven by only one source of market risk. The model can be used in the valuation of interest rate derivatives. It was introduced in 1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross as an extension of the Vasicek model.

In finance, a volatility swap is a forward contract on the future realised volatility of a given underlying asset. Volatility swaps allow investors to trade the volatility of an asset directly, much as they would trade a price index. Its payoff at expiration is equal to

A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant.

In probability and statistics, the Hellinger distance is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.

Black–Scholes equation

In mathematical finance, the Black–Scholes equation is a partial differential equation (PDE) governing the price evolution of a European call or European put under the Black–Scholes model. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of options, or more generally, derivatives.

Geographical distance Distance measured along the surface of the earth

Geographical distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem.

Variance gamma process

In the theory of stochastic processes, a part of the mathematical theory of probability, the variance gamma process (VG), also known as Laplace motion, is a Lévy process determined by a random time change. The process has finite moments distinguishing it from many Lévy processes. There is no diffusion component in the VG process and it is thus a pure jump process. The increments are independent and follow a variance-gamma distribution, which is a generalization of the Laplace distribution.

In probability theory, the rectified Gaussian distribution is a modification of the Gaussian distribution when its negative elements are reset to 0. It is essentially a mixture of a discrete distribution and a continuous distribution as a result of censoring.

The redundancy principle in biology expresses the need of many copies of the same entity to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation is physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.


In finance, an option on realized variance is a type of variance derivatives which is the derivative securities on which the payoff depends on the annualized realized variance of the return of a specified underlying asset, e.g. stock index, bond, exchange rate, etc. Another liquidated security of the same type is variance swap, which is, in other words, the futures contract on realized variance.

In finance, option on realized volatility is a subclass of derivatives securities that the payoff function embedded with the notion of annualized realized volatility of a specified underlying asset, which could be stock index, bond, foreign exchange rate, etc. Another product of volatility derivative that is widely traded refers to the volatility swap, which is in another word the forward contract on future realized volatility.

References

  1. Mark Rubinstein
  2. Trinomial Tree, geometric Brownian motion Archived 2011-07-21 at the Wayback Machine
  3. John Hull presents alternative formulae; see: Hull, John C. (2002). Options, Futures and Other Derivatives (5th ed.). Prentice Hall. ISBN   978-0-13-009056-0..
  4. Pricing Options Using Trinomial Trees
  5. Binomial and Trinomial Trees Versus Bjerksund and Stensland Approximations for American Options Pricing
  6. On-Line Options Pricing & Probability Calculators