Axiom schema of specification

Last updated

In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation, subset axiom scheme or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.

Contents

Some mathematicians call it the axiom schema of comprehension, although others use that term for unrestricted comprehension, discussed below.

Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. [1]

Statement

One instance of the schema is included for each formula φ in the language of set theory with free variables among x, w1, ..., wn, A. So B does not occur free in φ. In the formal language of set theory, the axiom schema is:

or in words:

Given any set A, there is a set B (a subset of A) such that, given any set x, x is a member of B if and only if x is a member of A and φ holds for x.

Note that there is one axiom for every such predicate φ; thus, this is an axiom schema.

To understand this axiom schema, note that the set B must be a subset of A. Thus, what the axiom schema is really saying is that, given a set A and a predicate , we can find a subset B of A whose members are precisely the members of A that satisfy . By the axiom of extensionality this set is unique. We usually denote this set using set-builder notation as . Thus the essence of the axiom is:

Every subclass of a set that is defined by a predicate is itself a set.

The preceding form of separation was introduced in 1930 by Thoralf Skolem as a refinement of a previous form by Zermelo. [2] The axiom schema of specification is characteristic of systems of axiomatic set theory related to the usual set theory ZFC, but does not usually appear in radically different systems of alternative set theory. For example, New Foundations and positive set theory use different restrictions of the axiom of comprehension of naive set theory. The Alternative Set Theory of Vopenka makes a specific point of allowing proper subclasses of sets, called semisets. Even in systems related to ZFC, this scheme is sometimes restricted to formulas with bounded quantifiers, as in Kripke–Platek set theory with urelements.

Relation to the axiom schema of replacement

The axiom schema of specification can almost be derived from the axiom schema of replacement.

First, recall this axiom schema:

for any functional predicate F in one variable that doesn't use the symbols A, B, C or D. Given a suitable predicate P for the axiom of specification, define the mapping F by F(D) = D if P(D) is true and F(D) = E if P(D) is false, where E is any member of A such that P(E) is true. Then the set B guaranteed by the axiom of replacement is precisely the set B required for the axiom of specification. The only problem is if no such E exists. But in this case, the set B required for the axiom of separation is the empty set, so the axiom of separation follows from the axiom of replacement together with the axiom of empty set.

For this reason, the axiom schema of specification is often left out of modern lists of the Zermelo–Fraenkel axioms. However, it's still important for historical considerations, and for comparison with alternative axiomatizations of set theory, as can be seen for example in the following sections.

Unrestricted comprehension

The axiom schema of unrestricted comprehension reads:

that is:

There exists a set B whose members are precisely those objects that satisfy the predicate φ.

This set B is again unique, and is usually denoted as {x : φ(x, w1, ..., wb)}.

This axiom schema was tacitly used in the early days of naive set theory, before a strict axiomatization was adopted. However, it was later discovered to lead directly to Russell's paradox, by taking φ(x) to be ¬(x  x) (i.e., the property that set x is not a member of itself). Therefore, no useful axiomatization of set theory can use unrestricted comprehension. Passing from classical logic to intuitionistic logic does not help, as the proof of Russell's paradox is intuitionistically valid.

Accepting only the axiom schema of specification was the beginning of axiomatic set theory. Most of the other Zermelo–Fraenkel axioms (but not the axiom of extensionality, the axiom of regularity, or the axiom of choice) then became necessary to make up for some of what was lost by changing the axiom schema of comprehension to the axiom schema of specification – each of these axioms states that a certain set exists, and defines that set by giving a predicate for its members to satisfy, i.e. it is a special case of the axiom schema of comprehension.

It is also possible to prevent the schema from being inconsistent by restricting which formulae it can be applied to, such as only stratified formulae in New Foundations (see below) or only positive formulae (formulae with only conjunction, disjunction, quantification and atomic formulae) in positive set theory. Positive formulae, however, typically are unable to express certain things that most theories can; for instance, there is no complement or relative complement in positive set theory.

In NBG class theory

In von Neumann–Bernays–Gödel set theory, a distinction is made between sets and classes. A class C is a set if and only if it belongs to some class E. In this theory, there is a theorem schema that reads

that is,

There is a class D such that any class C is a member of D if and only if C is a set that satisfies P.

provided that the quantifiers in the predicate P are restricted to sets.

This theorem schema is itself a restricted form of comprehension, which avoids Russell's paradox because of the requirement that C be a set. Then specification for sets themselves can be written as a single axiom

that is,

Given any class D and any set A, there is a set B whose members are precisely those classes that are members of both A and D.

or even more simply

The intersection of a class D and a set A is itself a set B.

In this axiom, the predicate P is replaced by the class D, which can be quantified over. Another simpler axiom which achieves the same effect is

that is,

A subclass of a set is a set.

In higher-order settings

In a typed language where we can quantify over predicates, the axiom schema of specification becomes a simple axiom. This is much the same trick as was used in the NBG axioms of the previous section, where the predicate was replaced by a class that was then quantified over.

In second-order logic and higher-order logic with higher-order semantics, the axiom of specification is a logical validity and does not need to be explicitly included in a theory.

In Quine's New Foundations

In the New Foundations approach to set theory pioneered by W. V. O. Quine, the axiom of comprehension for a given predicate takes the unrestricted form, but the predicates that may be used in the schema are themselves restricted. The predicate (C is not in C) is forbidden, because the same symbol C appears on both sides of the membership symbol (and so at different "relative types"); thus, Russell's paradox is avoided. However, by taking P(C) to be (C = C), which is allowed, we can form a set of all sets. For details, see stratification.

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

<span class="mw-page-title-main">Russell's paradox</span> Paradox in set theory

In mathematical logic, Russell's paradox is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen. At the end of the 1890s, Georg Cantor – considered the founder of modern set theory – had already realized that his theory would lead to a contradiction, as he told Hilbert and Richard Dedekind by letter.

In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy.

In set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.

The Kripke–Platek set theory with urelements (KPU) is an axiom system for set theory with urelements, based on the traditional (urelement-free) Kripke–Platek set theory. It is considerably weaker than the (relatively) familiar system ZFU. The purpose of allowing urelements is to allow large or high-complexity objects to be included in the theory's transitive models without disrupting the usual well-ordering and recursion-theoretic properties of the constructible universe; KP is so weak that this is hard to do by traditional means.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.

In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.

In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

<span class="mw-page-title-main">Axiom of limitation of size</span>

In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.

In mathematics and logic, Ackermann set theory (AST) is an axiomatic set theory proposed by Wilhelm Ackermann in 1956.

General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms.

In constructive mathematics, Church's thesis is an axiom stating that all total functions are computable functions.

S is an axiomatic set theory set out by George Boolos in his 1989 article, "Iteration Again". S, a first-order theory, is two-sorted because its ontology includes “stages” as well as sets. Boolos designed S to embody his understanding of the “iterative conception of set“ and the associated iterative hierarchy. S has the important property that all axioms of Zermelo set theory Z, except the axiom of extensionality and the axiom of choice, are theorems of S or a slight modification thereof.

References

Citations

  1. Heinz-Dieter Ebbinghaus (2007). Ernst Zermelo: An Approach to His Life and Work. Springer Science & Business Media. p. 88. ISBN   978-3-540-49553-6.
  2. W. V. O. Quine, Mathematical Logic (1981), p.164. Harvard University Press, 0-674-55451-5