Hexamethonium

Last updated
Hexamethonium
Hexamethonium.svg
Clinical data
Pregnancy
category
  • D
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • N,N,N,N',N',N-hexamethylhexane-1,6-diaminium
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C12H30N2
Molar mass 202.386 g·mol−1
3D model (JSmol)
  • C(CCCC[N+](C)(C)C)C[N+](C)(C)C
  • InChI=1S/C12H30N2/c1-13(2,3)11-9-7-8-10-12-14(4,5)6/h7-12H2,1-6H3/q+2 Yes check.svgY
  • Key:VZJFGSRCJCXDSG-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Hexamethonium is a non-depolarising ganglionic blocker, a nicotinic (nAChR) receptor antagonist [1] that acts in autonomic ganglia by binding mostly in or on the nAChR receptor, and not the acetylcholine binding site itself. It does not have any effect on the muscarinic acetylcholine receptors (mAChR) located on target organs of the parasympathetic nervous system but acts as antagonist at the nicotinic acetylcholine receptors located in sympathetic and parasympathetic ganglia (nAChR). [2]

Contents

Pharmacology

It can act on receptors at pre-ganglionic sites in both the sympathetic and parasympathetic nervous systems, which are both regulated by nicotinic ligand-gated ionotropic acetylcholine receptors. Postganglionic sympathetic systems are usually regulated by norepinephrine (noradrenaline) (adrenergic receptors), whereas parasympathetic systems are acetylcholine-based, and instead rely on muscarinic receptors (some post-ganglionic sympathetic neurons, such as those stimulating sweat glands, release acetylcholine).

The organ system and adverse effects of ganglion blockers are due to the parasympathetic and sympathetic stimuli blockage at preganglionic sites. Side-effects include combined sympatholytic (e.g., orthostatic hypotension and sexual dysfunction) and parasympatholytic (e.g., constipation, urinary retention, glaucoma, blurry vision, decreased lacrimal gland secretion, dry mouth (xerostomia)) effects.

Uses

It was formerly used to treat disorders, such as chronic hypertension, of the peripheral nervous system, which is innervated only by the sympathetic nervous system. The non-specificity of this treatment led to discontinuing its use. [3]

The use of inhaled hexamethonium, an unapproved drug, in a normal volunteer during a medical study is believed to have caused or contributed to her death [4] [5] in light of the presence of abnormal "ground glass opacities" on her chest X-ray.[ needs context ]

See also

Related Research Articles

Acetylcholine Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic. Substances that increase or decrease the overall activity of the cholinergic system are called cholinergics and anticholinergics, respectively.

Atropine Tropane alkaloid anticholinergic medication & used as antidote for nerve agent poisoning

Atropine is a tropane alkaloid and anticholinergic medication used to treat certain types of nerve agent and pesticide poisonings as well as some types of slow heart rate, and to decrease saliva production during surgery. It is typically given intravenously or by injection into a muscle. Eye drops are also available which are used to treat uveitis and early amblyopia. The intravenous solution usually begins working within a minute and lasts half an hour to an hour. Large doses may be required to treat some poisonings.

Acetylcholine receptor Integral membrane protein

An acetylcholine receptor is an integral membrane protein that responds to the binding of acetylcholine, a neurotransmitter.

Autonomic nervous system Division of the peripheral nervous system supplying smooth muscle and glands

The autonomic nervous system (ANS), formerly referred to as the vegetative nervous system, is a division of the peripheral nervous system that supplies smooth muscle and glands, and thus influences the function of internal organs. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, digestion, respiratory rate, pupillary response, urination, and sexual arousal. This system is the primary mechanism in control of the fight-or-flight response.

Parasympathetic nervous system Division of the autonomic nervous system

The parasympathetic nervous system (PSNS) is one of the three divisions of the autonomic nervous system, the others being the sympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of the autonomic nervous system, and sometimes considered an independent system.

Sympathetic nervous system Division of the autonomic nervous system

The sympathetic nervous system (SYNS) is one of two divisions of the autonomic nervous system, along with the parasympathetic nervous system. The enteric nervous system is sometimes considered part of the autonomic nervous system, and sometimes considered an independent system.

Anticholinergics are substances that block the action of the neurotransmitter called acetylcholine (ACh) at synapses in the central and peripheral nervous system.

A parasympathomimetic drug, sometimes called a cholinomimetic drug or cholinergic receptor stimulating agent, is a substance that stimulates the parasympathetic nervous system (PSNS). These chemicals are also called cholinergic drugs because acetylcholine (ACh) is the neurotransmitter used by the PSNS. Chemicals in this family can act either directly by stimulating the nicotinic or muscarinic receptors, or indirectly by inhibiting cholinesterase, promoting acetylcholine release, or other mechanisms. Common uses of parasympathomimetics include glaucoma, sjögren syndrome and underactive bladder.

Nicotinic acetylcholine receptor Acetylcholine receptors named for their selective binding of nicotine

Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction. In the peripheral nervous system: (1) they transmit outgoing signals from the presynaptic to the postsynaptic cells within the sympathetic and parasympathetic nervous system, and (2) they are the receptors found on skeletal muscle that receive acetylcholine released to signal for muscular contraction. In the immune system, nAChRs regulate inflammatory processes and signal through distinct intracellular pathways. In insects, the cholinergic system is limited to the central nervous system.

Muscarinic acetylcholine receptor Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system.

Neuromuscular-blocking drug

Neuromuscular-blocking drugs block neuromuscular transmission at the neuromuscular junction, causing paralysis of the affected skeletal muscles. This is accomplished via their action on the post-synaptic acetylcholine (Nm) receptors.

Trimetaphan camsilate

Trimetaphan camsilate (INN) or trimethaphan camsylate (USAN), trade name Arfonad, is a drug that counteracts cholinergic transmission at the ganglion type of nicotinic receptors of the autonomic ganglia and therefore blocks both the sympathetic nervous system and the parasympathetic nervous system. It acts as a non-depolarizing competitive antagonist at the nicotinic acetylcholine receptor, is short-acting, and is given intravenously.

Muscarinic antagonist Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic receptor antagonist (MRA) is a type of anticholinergic agent that blocks the activity of the muscarinic acetylcholine receptor. The muscarinic receptor is a protein involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

A ganglionic blocker is a type of medication that inhibits transmission between preganglionic and postganglionic neurons in the autonomic nervous system, often by acting as a nicotinic receptor antagonist. Nicotinic acetylcholine receptors are found on skeletal muscle, but also within the route of transmission for the parasympathetic and sympathetic nervous system. More specifically, nicotinic receptors are found within the ganglia of the autonomic nervous system, allowing outgoing signals to be transmitted from the presynaptic to the postsynaptic cells. Thus, for example, blocking nicotinic acetylcholine receptors blocks both sympathetic (excitatory) and parasympathetic (calming) stimulation of the heart. The nicotinic antagonist hexamethonium, for example, does this by blocking the transmission of outgoing signals across the autonomic ganglia at the postsynaptic nicotinic acetylcholine receptor.

A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine.

Surugatoxin

Surugatoxin (SGTX) is a type of venom found in the mid-gut digestive gland of the Japanese ivory mollusk Babyloniajaponica, a carnivorous gastropod. It functions as a ganglionic blocker of nicotinic acetylcholine receptors (nAChRs). The structurally and functionally related neosurugatoxin, also derived from Babylonia japonica, is an even more potent nAChR antagonist than SGTX.

The alpha-3 beta-4 nicotinic receptor, also known as the α3β4 receptor and the ganglion-type nicotinic receptor, is a type of nicotinic acetylcholine receptor, consisting of α3 and β4 subunits. It is located in the autonomic ganglia and adrenal medulla, where activation yields post- and/or presynaptic excitation, mainly by increased Na+ and K+ permeability.

Methoctramine

Methoctramine is a polymethylene tetraamine that acts as a muscarinic antagonist. It preferentially binds to the pre-synaptic receptor M2, a muscarinic acetylcholine ganglionic protein complex present basically in heart cells. In normal conditions -absence of methoctramine-, the activation of M2 receptors diminishes the speed of conduction of the sinoatrial and atrioventricular nodes thus reducing the heart rate. Thanks to its apparently high cardioselectivity, it has been studied as a potential parasymphatolitic drug, particularly against bradycardia. However, currently it’s only addressed for research purposes, since the administration to humans is still unavailable.

Autonomic drugs can either inhibit or enhance the functions of the parasympathetic and sympathetic nervous systems. This type of drug can be used to treat a wide range of diseases, such as glaucoma, asthma, urinary, gastrointestinal and cardiopulmonary disorders.

Cholinergic blocking drugs Group of drugs

Cholinergic blocking drugs are a group of drugs that block the action of acetylcholine (ACh), a neurotransmitter, in synapses of the cholinergic nervous system. They block acetylcholine from binding to cholinergic receptors, namely the nicotinic and muscarinic receptors.

References

  1. "Hexamethonium - Compound Summary". PubChem. U.S. National Library of Medicine. 2013-06-18.
  2. Howland RD, Mycek MJ (2006). Lippincott's illustrated reviews: Pharmacology (3rd ed.). p. 47.
  3. Hardman JB, Limbird LE, Gilman AG (2001). Goodman and Gilman's The Pharmacological Basis of Therapeutics (10th ed.). pp. 210–211. ISBN   978-0071354691.
  4. Perkins E (August 7, 2001). "Johns Hopkins' Tragedy: Could Librarians Have Prevented a Death?". Information Today, Inc. Retrieved 2008-10-06.
  5. Savulescu J, Spriggs M (February 2002). "The hexamethonium asthma study and the death of a normal volunteer in research". Journal of Medical Ethics. 28 (1): 3–4. doi:10.1136/jme.28.1.3. PMC   1733509 . PMID   11834748.