Magnesium sulfide

Last updated
Magnesium sulfide
Magnesium-sulfide-3D-ionic.png
Names
Other names
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.597 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-771-1
PubChem CID
UNII
  • InChI=1S/Mg.S/q+2;-2 X mark.svgN
    Key: QENHCSSJTJWZAL-UHFFFAOYSA-N X mark.svgN
  • InChI=1/Mg.S/q+2;-2
    Key: QENHCSSJTJWZAL-UHFFFAOYAO
  • [Mg+2].[S-2]
Properties
MgS
Molar mass 56.38 g/mol
Appearancewhite to reddish brown powder
Density 2.84 g/cm3
Melting point 2,000 °C (3,630 °F; 2,270 K) approx.
decomposes
Structure
Halite (cubic), cF8
Fm3m, No. 225
cubic
Thermochemistry
45.6 J/mol K
Std molar
entropy
(S298)
50.3 J/mol K
-347 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Source of H2S
Related compounds
Other anions
Magnesium oxide
Other cations
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Magnesium sulfide is an inorganic compound with the formula Mg S. It is a white crystalline material but often is encountered in an impure form that is brown and non-crystalline powder. It is generated industrially in the production of metallic iron.

Contents

Preparation and general properties

MgS is formed by the reaction of sulfur or hydrogen sulfide with magnesium. It crystallizes in the rock salt structure as its most stable phase, its zinc blende [1] and wurtzite [2] structures can be prepared by molecular beam epitaxy. The chemical properties of MgS resemble those of related ionic sulfides such as those of sodium, barium, or calcium. It reacts with oxygen to form the corresponding sulfate, magnesium sulfate. MgS reacts with water to give hydrogen sulfide and magnesium hydroxide. [3]

Applications

In the BOS steelmaking process, sulfur is the first element to be removed. Sulfur is removed from the impure blast furnace iron by the addition of several hundred kilograms of magnesium powder by a lance. Magnesium sulfide is formed, which then floats on the molten iron and is removed. [4]

MgS is a wide band-gap direct semiconductor of interest as a blue-green emitter, a property that has been known since the early 1900s. [5] The wide-band gap property also allows the use of MgS as photo-detector for short wavelength ultraviolet light. [6]

Occurrence

Aside from being a component of some slags, MgS is a rare nonterrestrial mineral niningerite detected in some meteorites. It is also a solid soution component along with CaS and FeS in oldhamite. MgS is also found in the circumstellar envelopes of certain evolved carbon stars, i. e., those with C/O > 1. [7]

Safety

MgS evolves hydrogen sulfide upon contact with moisture.

Related Research Articles

<span class="mw-page-title-main">Phosphor</span> Luminescent substance

A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet or visible light, and cathodoluminescent substances which glow when struck by an electron beam in a cathode-ray tube.

<span class="mw-page-title-main">Sphalerite</span> Zinc-iron sulfide mineral

Sphalerite is a sulfide mineral with the chemical formula (Zn,Fe)S. It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic massive sulfide deposits. It is found in association with galena, chalcopyrite, pyrite, calcite, dolomite, quartz, rhodochrosite, and fluorite.

Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. Sulfide also refers to chemical compounds large families of inorganic and organic compounds, e.g. lead sulfide and dimethyl sulfide. Hydrogen sulfide (H2S) and bisulfide (SH) are the conjugate acids of sulfide.

<span class="mw-page-title-main">Epitaxy</span> Crystal growth process relative to the substrate

Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epitaxial film or epitaxial layer. The relative orientation(s) of the epitaxial layer to the seed layer is defined in terms of the orientation of the crystal lattice of each material. For most epitaxial growths, the new layer is usually crystalline and each crystallographic domain of the overlayer must have a well-defined orientation relative to the substrate crystal structure. Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films. For most technological applications, single domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred. Epitaxy can also play an important role while growing superlattice structures.

<span class="mw-page-title-main">Zinc oxide</span> White powder insoluble in water

Zinc oxide is an inorganic compound with the formula ZnO. It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement, lubricants, paints, sunscreens, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, semi conductors, and first-aid tapes. Although it occurs naturally as the mineral zincite, most zinc oxide is produced synthetically.

<span class="mw-page-title-main">Zinc sulfide</span> Inorganic compound

Zinc sulfide is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite. Although this mineral is usually black because of various impurities, the pure material is white, and it is widely used as a pigment. In its dense synthetic form, zinc sulfide can be transparent, and it is used as a window for visible optics and infrared optics.

<span class="mw-page-title-main">Cadmium sulfide</span> Chemical compound

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow salt. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

<span class="mw-page-title-main">Wurtzite</span>

Wurtzite is a zinc and iron sulfide mineral with the chemical formula (Zn,Fe)S, a less frequently encountered structural polymorph form of sphalerite. The iron content is variable up to eight percent. It is trimorphous with matraite and sphalerite.

<span class="mw-page-title-main">Sulfate-reducing microorganism</span> Microorganisms that "breathe" sulfates

Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO2−
4
) as terminal electron acceptor, reducing it to hydrogen sulfide (H2S). Therefore, these sulfidogenic microorganisms "breathe" sulfate rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration.

<span class="mw-page-title-main">Sodium hydrosulfide</span> Chemical compound

Sodium hydrosulfide is the chemical compound with the formula NaSH. This compound is the product of the half-neutralization of hydrogen sulfide with sodium hydroxide (NaOH). NaSH and sodium sulfide are used industrially, often for similar purposes. Solid NaSH is colorless. The solid has an odor of H2S owing to hydrolysis by atmospheric moisture. In contrast with sodium sulfide, which is insoluble in organic solvents, NaSH, being a 1:1 electrolyte, is more soluble.

<span class="mw-page-title-main">Sulfur water</span> Water exposed to hydrogen sulfide gas

Sulfur water is a condition where water is exposed to hydrogen sulfide gas, giving a distinct "rotten egg" smell. This condition has different purposes in culture varying to health and implications to plumbing.

<span class="mw-page-title-main">Aluminium sulfide</span> Chemical compound

Aluminium sulfide is a chemical compound with the formula Al2S3. This colorless species has an interesting structural chemistry, existing in several forms. The material is sensitive to moisture, hydrolyzing to hydrated aluminum oxides/hydroxides. This can begin when the sulfide is exposed to the atmosphere. The hydrolysis reaction generates gaseous hydrogen sulfide (H2S).

Acid sulfate soils are naturally occurring soils, sediments or organic substrates that are formed under waterlogged conditions. These soils contain iron sulfide minerals and/or their oxidation products. In an undisturbed state below the water table, acid sulfate soils are benign. However, if the soils are drained, excavated or otherwise exposed to air, the sulfides react with oxygen to form sulfuric acid.

Tutton's salts are a family of salts with the formula M2M'(SO4)2(H2O)6 (sulfates) or M2M'(SeO4)2(H2O)6 (selenates). These materials are double salts, which means that they contain two different cations, M+ and M'2+ crystallized in the same regular ionic lattice. The univalent cation can be potassium, rubidium, cesium, ammonium (NH4), deuterated ammonium (ND4) or thallium. Sodium or lithium ions are too small. The divalent cation can be magnesium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc or cadmium. In addition to sulfate and selenate, the divalent anion can be chromate (CrO42−), tetrafluoroberyllate (BeF42−), hydrogenphosphate (HPO42−) or monofluorophosphate (PO3F2−). Tutton's salts crystallize in the monoclinic space group P21/a. The robustness is the result of the complementary hydrogen-bonding between the tetrahedral anions and cations as well their interactions with the metal aquo complex [M(H2O)6]2+.

Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.

<span class="mw-page-title-main">Magnesium monohydride</span> Chemical compound

Magnesium monohydride is a molecular gas with formula MgH that exists at high temperatures, such as the atmospheres of the Sun and stars. It was originally known as magnesium hydride, although that name is now more commonly used when referring to the similar chemical magnesium dihydride.

Evolution of metal ions in biological systems refers to the incorporation of metallic ions into living organisms and how it has changed over time. Metal ions have been associated with biological systems for billions of years, but only in the last century have scientists began to truly appreciate the scale of their influence. Major and minor metal ions have become aligned with living organisms through the interplay of biogeochemical weathering and metabolic pathways involving the products of that weathering. The associated complexes have evolved over time.

<span class="mw-page-title-main">Sulfoxylic acid</span> Chemical compound

Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.

References

  1. Bradford, C.; O'Donnell, C. B.; Urbaszek, B.; Balocchi, A.; Morhain, C.; Prior, K. A.; Cavenett, B. C. (2000). "Growth of zinc blende MgS/ZnSe single quantum wells by molecular-beam epitaxy using ZnS as a sulphur source". Appl. Phys. Lett. 76 (26): 3929. Bibcode:2000ApPhL..76.3929B. doi:10.1063/1.126824.
  2. Lai, Y. H.; He, Q. L.; Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Ho, S. K.; Tam, K. W.; Sou, I. K. (2013). "Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection". Applied Physics Letters. 102 (17): 171104. Bibcode:2013ApPhL.102q1104L. doi:10.1063/1.4803000.
  3. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  4. Irons, G. A.; Guthrie, R. I. L. "Kinetic aspects of magnesium desulfurization of blast furnace iron" Ironmaking and Steelmaking (1981), volume 8, pp.114-21.
  5. Tiede, E. "Reindarstellung von Magnesiumsulfid und seine Phosphorescenz. I (Preparation of pure magnesium sulfide and its phosphorescence. I)" Berichte der Deutschen Chemischen Gesellschaft (1916), volume 49, pages 1745-9.
  6. Hoi Lai, Ying; Cheung, Wai-Yip; Lok, Shu-Kin; Wong, George K.L.; Ho, Sut-Kam; Tam, Kam-Weng; Sou, Iam-Keong (2012). "Rocksalt MgS solar blind ultra-violet detectors". AIP Advances. 2 (1): 012149. Bibcode:2012AIPA....2a2149L. doi: 10.1063/1.3690124 .
  7. Goebel, J. H.; Moseley, S. H. (1985). "MgS Grain Component in Circumstellar Shells". Astrophysical Journal Letters. 290: L35. Bibcode:1985ApJ...290L..35G. doi:10.1086/184437.