Utricle (ear)

Last updated
Utricle
Components of the inner ear including the utricle
Details
Part of Inner ear of vertebrates
System Balance
Identifiers
Latin utriculus
TA98 A15.3.03.063
TA2 6999
FMA 61113
Anatomical terminology

The utricle and saccule are the two otolith organs in the vertebrate inner ear. They are part of the balancing system (membranous labyrinth) in the vestibule of the bony labyrinth (small oval chamber). [1] They use small stones and a viscous fluid to stimulate hair cells to detect motion and orientation. The utricle detects linear accelerations and head-tilts in the horizontal plane. The word utricle comes from Latin uter 'leather bag'.

Contents

Structure

The utricle is larger than the saccule and is of an oblong form, compressed transversely, and occupies the upper and back part of the vestibule, lying in contact with the recessus ellipticus and the part below it.

Macula

Macula of utricle
Bigotolith.jpg
illustration of otolith organs showing detail of utricle, otoconia, endolymph, cupula, macula, hair cell filaments, and saccular nerve
Details
Identifiers
Latin macula utriculi
TA98 A15.3.03.063
TA2 6999
FMA 61113
Anatomical terminology

The macula of utricle (macula acustica utriculi) is a small (2 by 3 mm) thickening lying horizontally on the floor of the utricle where the epithelium contains vestibular hair cells that allow a person to perceive changes in latitudinal acceleration as well as the effects of gravity; it receives the utricular filaments of the acoustic nerve.

The hair cells are mechanoreceptors which have 40 to 70 stereocilia and only one true cilium called a kinocilium. The kinocilium is the only sensory aspect of the hair cell and is what causes hair cell polarization. The tips of these stereocilia and kinocilium are embedded in a gelatinous layer, which together with the statoconia form the otolithic membrane. [2] This membrane is weighted with calcium carbonate-protein granules called otoliths. The otolithic membrane adds weight to the tops of the hair cells and increases their inertia. The addition in weight and inertia is vital to the utricle's ability to detect linear acceleration, as described below, and to determine the orientation of the head. [3] When the head is tilted such that gravity pulls on the statoconia, the gelatinous layer is pulled in the same direction also, causing the sensory hairs to bend. Labyrinthine activity responsible for the nystagmus induced by off-vertical axis rotation arises in the otolith organs and couples to the oculomotor system through the velocity storage mechanism. [4]

Microanatomy

The cavity of the utricle communicates behind with the semicircular ducts by five orifices.

The ductus utriculosaccularis comes off of the anterior wall of the utricle and opens into the ductus endolymphaticus.

Function

The utricle contains mechanoreceptors called hair cells that distinguish between degrees of tilting of the head, thanks to their apical stereocilia set-up. These are covered by otoliths which, due to gravity, pull on the stereocilia and tilt them. Depending on whether the tilt is in the direction of the kinocilium or not, the resulting hair cell polarisation is excitatory (depolarising) or inhibitory (hyperpolarisation), respectively. Any orientation of the head causes a combination of stimulation to the utricles and saccules of the two ears. The brain interprets head orientation by comparing these inputs to each other and to other input from the eyes and stretch receptors in the neck, thereby detecting whether only the head is tilted or the entire body is tipping. The inertia of the otolithic membranes is especially important in detecting linear acceleration. Suppose you are sitting in a car at a stoplight and then begin to move. The otolithic membrane of the macula utriculi briefly lags behind the rest of the tissues, bends the stereocilia backward, and stimulates the cells. When you stop at the next light, the macula stops but the otolithic membrane keeps going for a moment, bending the stereocilia forward. The hair cells convert this pattern of stimulation to nerve signals, and the brain is thus advised of changes in your linear velocity. [5] This signal to the vestibular nerve (which takes it to the brainstem) does not adapt with time. The effect of this is that, for example, an individual lying down to sleep will continue to detect that they are lying down hours later when they awaken.

Unbent and at rest hairs in the macula have a base rate of depolarization of 90-100 action potentials a second. The brain suppresses this, and we ignore it and know that our body is stabilized. If the head moves or the body accelerates or decelerates, then bending occurs. Depending on the direction of bending, the hair cells will either be excited or inhibited resulting in either an increase or decrease in firing frequency of the hair cells.

The macula is also sensitive to linear acceleration as the inertia possessed by the statoconia can also shift the gelatinous layer during increases and decreases in linear velocity.

Inner ear, showing utricle near centre Blausen 0329 EarAnatomy InternalEar.png
Inner ear, showing utricle near centre

See also

Related Research Articles

Inner ear

The inner ear is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts:

Sense of balance Physiological sense allowing animals to dynamically maintain an unstable posture

The sense of balance or equilibrioception is the perception of balance and spatial orientation. It helps prevent humans and nonhuman animals from falling over when standing or moving. Equilibrioception is the result of a number of sensory systems working together: the eyes, the inner ears, and the body's sense of where it is in space (proprioception) ideally need to be intact.

Vestibulocochlear nerve

The vestibulocochlear nerve, known as the eighth cranial nerve, transmits sound and equilibrium (balance) information from the inner ear to the brain. Through olivocochlear fibers, it also transmits motor and modulatory information from the superior olivary complex in the brainstem to the cochlea.

Semicircular canals

The semicircular canals or semicircular ducts are three semicircular, interconnected tubes located in the innermost part of each ear, the inner ear. The three canals are the horizontal, superior and posterior semicircular canals.

Saccule

The saccule is a bed of sensory cells in the inner ear. It translates head movements into neural impulses for the brain to interpret. The saccule detects linear accelerations and head tilts in the vertical plane. When the head moves vertically, the sensory cells of the saccule are disturbed and the neurons connected to them begin transmitting impulses to the brain. These impulses travel along the vestibular portion of the eighth cranial nerve to the vestibular nuclei in the brainstem.

Vestibular system Sensory system that facilitates balance

The vestibular system, in vertebrates, is a sensory system that provides the leading contribution to the sense of balance and spatial orientation for the purpose of coordinating movement with balance. Together with the cochlea, a part of the auditory system, it constitutes the labyrinth of the inner ear in most mammals.

Spatial disorientation of an aviator is the inability to determine attitude, altitude or speed. It is most critical at night or in poor weather, when there is no visible horizon, since vision is the dominant sense for orientation. The auditory system, vestibular system, and proprioceptive system collectively work to co-ordinate movement with balance, and can also create illusory nonvisual sensations, resulting in spatial disorientation in the absence of strong visual cues.

Otolith

An otolith, also called statoconium or otoconium or statolith, is a calcium carbonate structure in the saccule or utricle of the inner ear, specifically in the vestibular system of vertebrates. The saccule and utricle, in turn, together make the otolith organs. These organs are what allows an organism, including humans, to perceive linear acceleration, both horizontally and vertically (gravity). They have been identified in both extinct and extant vertebrates.

Stereocilia (inner ear)

In the inner ear, stereocilia are the mechanosensing organelles of hair cells, which respond to fluid motion in numerous types of animals for various functions, including hearing and balance. They are about 10–50 micrometers in length and share some similar features of microvilli. The hair cells turn the fluid pressure and other mechanical stimuli into electric stimuli via the many microvilli that make up stereocilia rods. Stereocilia exist in the auditory and vestibular systems.

Vestibular nerve

The vestibular nerve is one of the two branches of the vestibulocochlear nerve. In humans the vestibular nerve transmits sensory information transmitted by vestibular hair cells located in the two otolith organs and the three semicircular canals via the vestibular ganglion of Scarpa. Information from the otolith organs reflects gravity and linear accelerations of the head. Information from the semicircular canals reflects rotational movement of the head. Both are necessary for the sensation of body position and gaze stability in relation to a moving environment.

Sensory illusions in aviation Misjudgment of true orientation by pilots

Human senses are not naturally geared for the inflight environment. Pilots may experience disorientation and loss of perspective, creating illusions that range from false horizons to sensory conflict with instrument readings or the misjudging of altitude over water.

Ampullary cupula

The ampullary cupula, or cupula, is a structure in the vestibular system, providing the sense of spatial orientation.

Otolithic membrane

The otolithic membrane is a fibrous structure located in the vestibular system of the inner ear. It plays a critical role in the brain's interpretation of equilibrium. The membrane serves to determine if the body or the head is tilted, in addition to the linear acceleration of the body. The linear acceleration could be in the horizontal direction as in a moving car or vertical acceleration such as that felt when an elevator moves up or down.

A kinocilium is a special type of cilium on the apex of hair cells located in the sensory epithelium of the vertebrate inner ear.

Graveyard spiral Spiral dive entered by a pilot due to spatial disorientation

In aviation, a graveyard spiral is a type of dangerous spiral dive entered into accidentally by a pilot who is not trained or not proficient in flying in instrument meteorological conditions (IMC). Other names for this phenomenon include suicide spiral, deadly spiral, death spiral and vicious spiral.

Crista ampullaris

The crista ampullaris is the sensory organ of rotation. They are found in the ampullae of each of the semicircular canals of the inner ear, meaning that there are 3 pairs in total. The function of the crista ampullaris is to sense angular acceleration and deceleration.

The saccule is the smaller sized vestibular sac ; it is globular in form, and lies in the recessus sphæricus near the opening of the scala vestibuli of the cochlea. Its anterior part exhibits an oval thickening, the macula of saccule, to which are distributed the saccular filaments of the acoustic nerve.

The vestibular evoked myogenic potential is a neurophysiological assessment technique used to determine the function of the otolithic organs of the inner ear. It complements the information provided by caloric testing and other forms of inner ear testing. There are two different types of VEMPs. One is the oVEMP and another is the cVEMP. The oVEMP measures integrity of the utricule and superior vestibular nerve and the cVemp measures the saccule and the inferior vestibular nerve.

The righting reflex, also known as the labyrinthine righting reflex, is a reflex that corrects the orientation of the body when it is taken out of its normal upright position. It is initiated by the vestibular system, which detects that the body is not erect and causes the head to move back into position as the rest of the body follows. The perception of head movement involves the body sensing linear acceleration or the force of gravity through the otoliths, and angular acceleration through the semicircular canals. The reflex uses a combination of visual system inputs, vestibular inputs, and somatosensory inputs to make postural adjustments when the body becomes displaced from its normal vertical position. These inputs are used to create what is called an efference copy. This means that the brain makes comparisons in the cerebellum between expected posture and perceived posture, and corrects for the difference. The reflex takes 6 or 7 weeks to perfect, but can be affected by various types of balance disorders.

The Ocular tilt reaction (OTR), comprises skew deviation, head tilt and ocular torsion involving structures of the inner ear responsible for maintenance of balance of the body i.e. the semi-circular canals (SCC), utricle and saccule.

References

PD-icon.svgThis article incorporates text in the public domain from page 1051 of the 20th edition of Gray's Anatomy (1918)

  1. Moores, Keith L. "Essential Clinical Anatomy" Lippincott Williams & Wilkins; Second Edition (2002).
  2. Johnsson, LG; Hawkins JE, Jr (Sep 22, 1967). "Otolithic membranes of the saccule and utricle in man". Science. 157 (3795): 1454–6. Bibcode:1967Sci...157.1454J. doi:10.1126/science.157.3795.1454. PMID   5341324. S2CID   39417066.
  3. Saladin, Kenneth S. (2010). Anatomy & physiology : the unity of form and function (5th ed.). Dubuque: McGraw-Hill. ISBN   978-0073525693.
  4. Cohen, B; Suzuki, JI; Raphan, T (Oct 3, 1983). "Role of the otolith organs in generation of horizontal nystagmus: effects of selective labyrinthine lesions". Brain Research. 276 (1): 159–64. doi:10.1016/0006-8993(83)90558-9. PMID   6626994. S2CID   20083626.
  5. Saladin, Kenneth S. Anatomy & Physiology: the Unity of Form and Function. Dubuque: McGraw-Hill, 2010. Print.