Ascending limb of loop of Henle

Last updated
Ascending limb of loop of Henle
Gray1128.png
Scheme of renal tubule and its vascular supply. (Labeled at center left.)
Kidney nephron molar transport diagram.png
Nephron ion flow diagram
Details
Identifiers
Latin tubulus rectus distalis, pars recta tubuli distalis
FMA 17717
Anatomical terminology

Within the nephron of the kidney, the ascending limb of the loop of Henle is a segment of the heterogenous loop of Henle downstream of the descending limb, after the sharp bend of the loop. This part of the renal tubule is divided into a thin and thick ascending limb; the thick portion is also known as the distal straight tubule, in contrast with the distal convoluted tubule downstream.

Contents

Structure

The ascending limb of the loop of Henle is a direct continuation from the descending limb of loop of Henle, and one of the structures in the nephron of the kidney. The ascending limb has a thin and a thick segment. The ascending limb drains urine into the distal convoluted tubule.

The thick ascending limb is found in the medulla of the kidney, and the thick ascending limb can be divided into a part that is in the renal medulla and a part that is in the renal cortex. The ascending limb is much thicker than the descending limb.

At the junction of the thick ascending limb and the distal convoluted tubule are a subset of 15–25 cells known as the macula densa that are part of renal autoregulation through the mechanism of tubuloglomerular feedback.

Histology

As in the descending limb, the epithelium is simple squamous epithelium. [1]

Function

Thin descending limb

The thin ascending limb is impermeable to water; but is permeable to ions allowing for some sodium reabsorption. Na/K-ATPase is expressed at very low levels in this segment and thus this reabsorption is likely through passive diffusion. [2] Salt moves out of the tubule and into the interstitium due to osmotic pressure created by the countercurrent system.

Thick ascending limb

Functionally, the parts of the ascending limb in the medulla and cortex are very similar. [ citation needed ]

The medullary ascending limb is largely impermeable to water. Sodium (Na+), potassium (K+) and chloride (Cl) ions are reabsorbed by active transport. The predominant mechanism of active transport in this segment is through the Na+/K+/Cl co-transporter NKCC2 as well as the sodium/hydrogen exchanger NHE3. [3] In total this segment accounts for approximately 25–30% of total Na+ reabsorption along the nephron. This is of clinical importance since commonly used "loop diuretics" act by inhibiting the NKCC2. [4] This active transport enables the kidney to establish an osmotic gradient that is essential to the kidneys ability to concentrate the urine past isotonicity.

K+ is passively transported along its concentration gradient through a K+ leak channel in the apical aspect of the cells, back into the lumen of the ascending limb. This K+ "leak" generates a positive electrochemical potential difference in the lumen. This drives more paracellular reabsorption of Na+, as well as other cations such as magnesium (Mg2+) and importantly calcium Ca2+ due to charge repulsion.

This is also the part of the tubule that generates Tamm–Horsfall protein. The function of this protein is not well understood, but is responsible for creating urinary casts.

Clinical significance

The thick ascending limb symporter: Na-K-Cl cotransporter.

See also

Related Research Articles

<span class="mw-page-title-main">Nephron</span> Microscopic structural and functional unit of the kidney.

The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure called Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 million nephrons in each kidney. Blood is filtered as it passes through three layers: the endothelial cells of the capillary wall, its basement membrane, and between the foot processes of the podocytes of the lining of the capsule. The tubule has adjacent peritubular capillaries that run between the descending and ascending portions of the tubule. As the fluid from the capsule flows down into the tubule, it is processed by the epithelial cells lining the tubule: water is reabsorbed and substances are exchanged ; first with the interstitial fluid outside the tubules, and then into the plasma in the adjacent peritubular capillaries through the endothelial cells lining that capillary. This process regulates the volume of body fluid as well as levels of many body substances. At the end of the tubule, the remaining fluid—urine—exits: it is composed of water, metabolic waste, and toxins.

<span class="mw-page-title-main">Collecting duct system</span> Kidney system

The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis. The collecting duct system is the last part of nephron and participates in electrolyte and fluid balance through reabsorption and excretion, processes regulated by the hormones aldosterone and vasopressin.

<span class="mw-page-title-main">Distal convoluted tubule</span>

The distal convoluted tubule (DCT) is a portion of kidney nephron between the loop of Henle and the collecting tubule.

<span class="mw-page-title-main">Renal physiology</span> Study of the physiology of the kidney

Renal physiology is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

<span class="mw-page-title-main">Proximal tubule</span> Segment of nephron in kidneys

The proximal tubule is the segment of the nephron in kidneys which begins from the renal pole of the Bowman's capsule to the beginning of loop of Henle. It can be further classified into the proximal convoluted tubule (PCT) and the proximal straight tubule (PST).

<span class="mw-page-title-main">Loop of Henle</span> Part of kidney tissue

In the kidney, the loop of Henle is the portion of a nephron that leads from the proximal convoluted tubule to the distal convoluted tubule. Named after its discoverer, the German anatomist Friedrich Gustav Jakob Henle, the loop of Henle's main function is to create a concentration gradient in the medulla of the kidney.

<span class="mw-page-title-main">Renal medulla</span> Innermost part of the kidney

The renal medulla is the innermost part of the kidney. The renal medulla is split up into a number of sections, known as the renal pyramids. Blood enters into the kidney via the renal artery, which then splits up to form the segmental arteries which then branch to form interlobar arteries. The interlobar arteries each in turn branch into arcuate arteries, which in turn branch to form interlobular arteries, and these finally reach the glomeruli. At the glomerulus the blood reaches a highly disfavourable pressure gradient and a large exchange surface area, which forces the serum portion of the blood out of the vessel and into the renal tubules. Flow continues through the renal tubules, including the proximal tubule, the Loop of Henle, through the distal tubule and finally leaves the kidney by means of the collecting duct, leading to the renal pelvis, the dilated portion of the ureter.

<span class="mw-page-title-main">Loop diuretic</span> Diuretics that act at the ascending limb of the loop of Henle in the kidney

Loop diuretics are diuretics that act on the Na-K-Cl cotransporter along the thick ascending limb of the loop of Henle in nephrons of the kidneys. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or chronic kidney disease. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.

In biology, a tubule is a general term referring to small tube or similar type of structure. Specifically, tubule can refer to:

An osmotic diuretic is a type of diuretic that inhibits reabsorption of water and sodium (Na). They are pharmacologically inert substances that are given intravenously. They increase the osmolarity of blood and renal filtrate.This fluid eventually becomes urine.

<span class="mw-page-title-main">Vasa recta (kidney)</span>

The vasa recta of the kidney, are the straight arterioles, and the straight venules of the kidney, – a series of blood vessels in the blood supply of the kidney that enter the medulla as the straight arterioles, and leave the medulla to ascend to the cortex as the straight venules.. They lie parallel to the loop of Henle.

<span class="mw-page-title-main">Bartter syndrome</span> Medical condition

Bartter syndrome (BS) is a rare inherited disease characterised by a defect in the thick ascending limb of the loop of Henle, which results in low potassium levels (hypokalemia), increased blood pH (alkalosis), and normal to low blood pressure. There are two types of Bartter syndrome: neonatal and classic. A closely associated disorder, Gitelman syndrome, is milder than both subtypes of Bartter syndrome.

A countercurrent mechanism system is a mechanism that expends energy to create a concentration gradient.

In the physiology of the kidney, tubuloglomerular feedback (TGF) is a feedback system inside the kidneys. Within each nephron, information from the renal tubules is signaled to the glomerulus. Tubuloglomerular feedback is one of several mechanisms the kidney uses to regulate glomerular filtration rate (GFR). It involves the concept of purinergic signaling, in which an increased distal tubular sodium chloride concentration causes a basolateral release of adenosine from the macula densa cells. This initiates a cascade of events that ultimately brings GFR to an appropriate level.

The Na-K-Cl cotransporter (NKCC) is a transport protein that aids in the secondary active transport of sodium, potassium, and chloride into cells. In humans there are two isoforms of this membrane transport protein, NKCC1 and NKCC2, encoded by two different genes. Two isoforms of the NKCC1/Slc12a2 gene result from keeping or skipping exon 21 in the final gene product.

<span class="mw-page-title-main">Descending limb of loop of Henle</span>

Within the nephron of the kidney, the descending limb of loop of Henle is the portion of the renal tubule constituting the first part of the loop of Henle.

Renal reabsorption of sodium (Na+) is a part of renal physiology. It uses Na-H antiport, Na-glucose symport, sodium ion channels (minor). It is stimulated by angiotensin II and aldosterone, and inhibited by atrial natriuretic peptide.

<span class="mw-page-title-main">Diuretic</span> Substance that promotes the production of urine

A diuretic is any substance that promotes diuresis, the increased production of urine. This includes forced diuresis. A diuretic tablet is sometimes colloquially called a water tablet. There are several categories of diuretics. All diuretics increase the excretion of water from the body, through the kidneys. There exist several classes of diuretic, and each works in a distinct way. Alternatively, an antidiuretic, such as vasopressin, is an agent or drug which reduces the excretion of water in urine.

The rock dove, Columbia livia, has a number of special adaptations for regulating water uptake and loss.

<span class="mw-page-title-main">Mammalian kidney</span> Paired organ in the urinary system

The mammalian kidneys are the paired organ of the urinary system of mammals, which is a type of metanephric kidney. The kidney in mammals is usually bean-shaped, located retroperitoneally on the back (dorsal) wall of the body. Each kidney consists of a renal capsule, peripheral cortex, internal medulla, calices, and renal pelvis, although the calices or renal pelvis may be absent in some species. Urine is excreted from the kidney through the ureter. The structure of the kidney may differ between species depending on the environment, in particular on its aridity. The cortex is responsible for filtering the blood, this part of the kidney is similar to the typical kidneys of less developed vertebrates. Nitrogen-containing waste products are excreted by the kidneys in mammals mainly in the form of urea.

References

PD-icon.svgThis article incorporates text in the public domain from page 1223 of the 20th edition of Gray's Anatomy (1918)

  1. Pawlina, Wojciech and Ross, Michael. Histology: A text and Atlas. 5th ed. N.p: Clipping,2006. 663+.Print.
  2. Sands JM, Layton HE (2013). "The Urine Concentrating Mechanism and Urea Transporters". In Alpern RJ, Moe OW, Caplan M (eds.). Seldin and Giebisch's The Kidney. Elsevier. pp. 1463–1510. doi:10.1016/b978-0-12-381462-3.00043-4. ISBN   9780123814623.
  3. Mount DB (November 2014). "Thick ascending limb of the loop of Henle". Clinical Journal of the American Society of Nephrology. 9 (11): 1974–86. doi:10.2215/CJN.04480413. PMC   4220766 . PMID   25318757.
  4. Wile D (September 2012). "Diuretics: a review". Annals of Clinical Biochemistry. 49 (Pt 5): 419–31. doi: 10.1258/acb.2011.011281 . PMID   22783025.