Astrobiology Science and Technology for Exploring Planets

Last updated
Hydrothermal vents and its ecosystems are a research focus of ASTEP Blacksmoker in Atlantic Ocean.jpg
Hydrothermal vents and its ecosystems are a research focus of ASTEP

Astrobiology Science and Technology for Exploring Planets (ASTEP) was a program established by NASA to sponsor research projects that advance the technology and techniques used in planetary exploration. The objective was to enable the study of astrobiology and to aid the planning of extraterrestrial exploration missions while prioritizing science, technology, and field campaigns.

Contents

Overview

ASTEP is one of four elements of NASA's Astrobiology Program, which falls under the Planetary Science Division of the Science Mission Directorate. According to the formal description from NASA, "The ASTEP program sponsors the development of technologies that enable remote searches for, and identification of, life in extreme environments, including planetary surfaces and subsurfaces." [1] ASTEP is concerned with discovering technologies which will enable scientists to study astrobiology both on the surface of the Earth and on extraterrestrial bodies. A central focus of ASTEP's research is terrestrial field campaigns, or long-duration expeditions where researchers live in the same region they are studying. These are conducted on Earth in remote or hostile locations, such as Antarctica or the bottom of the ocean. Through understanding complex and exotic life on Earth, such as extremophiles, scientists hope to better define the characteristics they should look for and the locations they should seek when attempting to discover extraterrestrial life.

The program was active from 2001 to 2014, when it was consolidated into the Planetary Science and Technology from Analog Research (PSTAR) program. [2]

Methodology

ASTEP funded projects typically perform research by searching for and studying extremophile biology in Earth's harshest environments through the use of field research campaigns. The environments where this research is conducted is meant to simulate the expected conditions on extraterrestrial worlds in the Solar System. Past field work has typically targeted two regions. Arctic and Antarctic climates simulate the low temperatures expected on many other planets such as Mars, near rover landing sites. [1] Underwater regions are also an area of study because they simulate high pressure, low light and variable temperature conditions. This region simulates proposed missions to explore the vast liquid water ocean that is expected to reside under Jupiter's moon, Europa. [3]

ASTEP promotes the development of new exploration technologies and techniques that can search, identify, and study life in extreme conditions in locations that are difficult to access. There is a broad range of things that can fall into this category. Previous examples include laboratories such as the Mars Science Laboratory, sampling techniques, the Mars rovers, the Titan lander (Huygens), and submersibles. [4] Autonomous systems are preferred because data can be collected without the presence of humans near the test area. The field campaigns are used as a proof-of-concept for the proposed technologies as well as a demonstration. They are generally tested with mock-mission where conditions and challenges simulate those that might be experienced on an actual mission. This helps identify their strengths and weaknesses in the technology's mission execution and structural endurance.

Beyond the practice of new technologies, ASTEP strives to learn more about astrobiology through observation and study on the field campaigns. Analyzing the collected samples helps researchers determine the thermal, photonic, pressure, and chemical boundary conditions for living organisms. Understanding how these organisms adapt and evolve in these extreme conditions may be similar to the methods used by extraterrestrial organisms, and thus offers clues about where life may be found. Another area of study is the environmental footprint that extremophile life leaves behind, biomolecules or biosignatures such as chemical trails, geological formations, etc. Identifying these clues often inspires new biology searching techniques, and simplifies mission planning.

Past projects

2007

2008

2011

The 2011 projects included:[ citation needed ]

Other projects

Stromatolite building provides important geological information on the history of microorganisms dating back to over a billion years ago. In recent years, ASTEP has been researching how these layered fossils could have formed by studying modern day microbial mats, which leave stromatolite similar to their ancestors. [6]

ASTEP's instrument development program is currently working on a prototype to detect the presence of DNA on the Martian surface. [1] The prototype will replicate any DNA found in Martian ice or regolith using polymerase chain reaction amplification techniques.

The IceBite Project involves testing drills for future Martian missions where ice will need to be penetrated. The research is being conducted in high altitude Antarctic valleys which closely resemble the Phoenix landing site in geologic composition. [1] As of 2009, the scientists have successfully completed the first phase of the three-year mission, which was to probe the region, install scientific instruments, and determine the future testing sites. [1]

A team of ASTEP scientists are exploring the Mid-Cayman Spreading Center, a wide ridge at the westernmost region of the Cayman Trough. Oceanic life reaches the extremes at the depths, where the pressure is the greatest and underwater sea vents pump hot and mineral-rich water into the ocean. Project researchers think extraterrestrial life could be similar to the exotic life forms found near these vents. The submersible Nereus was developed by ASTEP to autonomously survey the hydrothermal vent systems at the depths of the Mid-Cayman Spreading Center. [3]

Publicity

In order to raise awareness about the research being conducted under the auspices of ASTEP, scientists have been increasingly using blogs as a way to convey information about their studies, typically when they are performing science at a remote location on a terrestrial field test. Scientists have also begun contacting museums via satellite uplink to discuss astrobiology with the public. [4] The most prominent blog is produced by NASA's IceBite team, which performs annual expeditions to Antarctica.

See also

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Allan Hills 84001</span> Martian meteorite discovered in Antarctica in 1984

Allan Hills 84001 (ALH84001) is a fragment of a Martian meteorite that was found in the Allan Hills in Antarctica on December 27, 1984, by a team of American meteorite hunters from the ANSMET project. Like other members of the shergottite–nakhlite–chassignite (SNC) group of meteorites, ALH84001 is thought to have originated on Mars. However, it does not fit into any of the previously discovered SNC groups. Its mass upon discovery was 1.93 kilograms (4.3 lb).

<span class="mw-page-title-main">Life on Mars</span> Scientific assessments on the microbial habitability of Mars

The possibility of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ancient Noachian time period, the surface environment of Mars had liquid water and may have been habitable for microorganisms, but habitable conditions do not necessarily indicate life.

<span class="mw-page-title-main">Caves of Mars Project</span> Program to assess the best place for research and habitation modules on Mars

The Caves of Mars Project was an early 2000s program funded through Phase II by the NASA Institute for Advanced Concepts to assess the best place to situate the research and habitation modules that a human mission to Mars would require. The final report was published in mid 2004.

<span class="mw-page-title-main">Planetary protection</span> Guiding principle of a space mission

Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth in the case of sample-return missions. Planetary protection reflects both the unknown nature of the space environment and the desire of the scientific community to preserve the pristine nature of celestial bodies until they can be studied in detail.

<span class="mw-page-title-main">Christopher McKay</span> American planetary scientist

Dr Christopher P. McKay is an American planetary scientist at NASA Ames Research Center, studying planetary atmospheres, astrobiology, and terraforming. McKay majored in physics at Florida Atlantic University, where he also studied mechanical engineering, graduating in 1975, and received his PhD in astrogeophysics from the University of Colorado in 1982.

<span class="mw-page-title-main">David S. McKay</span> American planetary geologist

David Stewart McKay was chief scientist for astrobiology at the Johnson Space Center. During the Apollo program, McKay provided geology training to the first men to walk on the Moon in the late 1960s. McKay was the first author of a scientific paper postulating past life on Mars on the basis of evidence in Martian meteorite ALH 84001, which had been found in Antarctica. This paper has become one of the most heavily cited papers in planetary science. The NASA Astrobiology Institute was founded partially as a result of community interest in this paper and related topics. He was a native of Titusville, Pennsylvania.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

Charles Cockell is a British astrobiologist who is professor of astrobiology in the School of Physics and Astronomy at the University of Edinburgh and co-director of the UK Centre for Astrobiology.

<span class="mw-page-title-main">Living Interplanetary Flight Experiment</span> The Planetary Societys contribution to the failed Fobos-Grunt mission (2011)

The Living Interplanetary Flight Experiment was an interplanetary mission developed by the Planetary Society. It consisted of sending selected microorganisms on a three-year interplanetary round-trip in a small capsule aboard the Russian Fobos-Grunt spacecraft in 2011, which was a failed sample-return mission to the Martian moon Phobos. The Fobos-Grunt mission failed to leave Earth orbit and was destroyed.

<span class="mw-page-title-main">Martian soil</span> Fine regolith found on the surface of Mars

Martian soil is the fine regolith found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil, including its toxicity due to the presence of perchlorates. The term Martian soil typically refers to the finer fraction of regolith. So far, no samples have been returned to Earth, the goal of a Mars sample-return mission, but the soil has been studied remotely with the use of Mars rovers and Mars orbiters.

<span class="mw-page-title-main">Mars Astrobiology Explorer-Cacher</span> Cancelled NASA Mars rover concept

The Mars Astrobiology Explorer-Cacher (MAX-C), also known as Mars 2018 mission, was a NASA concept for a Mars rover mission, proposed to be launched in 2018 together with the European ExoMars rover. The MAX-C rover concept was cancelled in April 2011 due to budget cuts.

Penelope J. Boston is a speleologist. She was associate director of the National Cave and Karst Research Institute in Carlsbad, New Mexico, along with founding and directing the Cave and Karst Studies Program at New Mexico Institute of Mining and Technology in Socorro. Among her research interests are geomicrobiology of caves and mines, extraterrestrial speleogenesis, and space exploration and astrobiology generally.

Interplanetary contamination refers to biological contamination of a planetary body by a space probe or spacecraft, either deliberate or unintentional.

Richard Brice Hoover is a physicist who has authored 33 volumes and 250 papers on astrobiology, extremophiles, diatoms, solar physics, X-ray/EUV optics and meteorites. He holds 11 U.S. patents and was 1992 NASA Inventor of the Year. He was employed at the United States' NASA Marshall Space Flight Center from 1966 to 2012, where he worked on astrophysics and astrobiology. He established the Astrobiology Group there in 1997 and until his retirement in late 2011 he headed their astrobiology research. He conducted research on microbial extremophiles in the Antarctic, microfossils, and chemical biomarkers in precambrian rocks and in carbonaceous chondrite meteorites. Hoover has published claims to have discovered fossilized microorganisms in a collection of select meteorites on multiple occasions.

Terrestrial analogue sites are places on Earth with assumed past or present geological, environmental or biological conditions of a celestial body such as the Moon or Mars. Analogue sites are used in the frame of space exploration to either study geological or biological processes observed on other planets, or to prepare astronauts for surface extra-vehicular activity.

<span class="mw-page-title-main">Nathalie Cabrol</span> French American astrobiologist

Nathalie A. Cabrol is a French American astrobiologist specializing in planetary science. Cabrol studies ancient lakes on Mars, and undertakes high-altitude scientific expeditions in the Central Andes of Chile as the principal investigator of the "High Lakes Project" funded by the NASA Astrobiology Institute (NAI). There, with her team, she documents life's adaptation to extreme environments, the effect of rapid climate change on lake ecosystems and habitats, its geobiological signatures, and relevance to planetary exploration.

<span class="mw-page-title-main">Urey instrument</span>

The Urey instrument, or Urey: Mars Organic and Oxidant Detector was a developmental spacecraft instrument for detecting organic compounds including amino acids.

Javier Martín-Torres is a Spanish physicist with interests in atmospheric sciences, geophysics, and astrobiology. He has published over 100 scientific papers in these areas.

Signs Of LIfe Detector (SOLID) is an analytical instrument under development to detect extraterrestrial life in the form of organic biosignatures obtained from a core drill during planetary exploration.

References

  1. 1 2 3 4 5 (Marinova, 2010) http://www.astrobio.net/index.php?option=com_expedition&task=detail&id=3388&type=blog&pid=19
  2. "NASA Astrobiology". NASA. Retrieved 28 January 2022.
  3. 1 2 (German, 2009) http://www.astrobio.net/pressrelease/3287/oases-for-life-on-the-mid-caymen-rise
  4. 1 2 (Billings, Apout ASTEP, 2008) "About ASTEP". Archived from the original on 2010-05-28. Retrieved 2010-03-10.
  5. 2010 ASTEP Conference Schedule
  6. (Schirber, Astrobiology Magazine, 2010) http://www.astrobio.net/exclusive/3418/first-fossil-makers-in-hot-water

Works cited

  1. Billings, L. (2008, 01 22). About ASTEP. Retrieved from Astrobiology: https://web.archive.org/web/20100528091403/http://astrobiology.nasa.gov/astep/about/
  2. Billings, L. (2008, 02 06). NASA Astrobiology Roadmap 2008. Retrieved from Astrobiology: https://web.archive.org/web/20100219093302/http://astrobiology.nasa.gov/roadmap/
  3. Commodore, J. (2010, 02). NRA Proposers Guidebook - Final. Retrieved from NASA: http://www.hq.nasa.gov/office/procurement/nraguidebook/
  4. German, C. (2009, 10 21). Astrobiology Magazine. Retrieved from Oases for Life on the Mid-Caymen Rise: http://www.astrobio.net/pressrelease/3287/oases-for-life-on-the-mid-caymen-rise
  5. Marinova, M. (2010, 02 01). Astrobiology Magazine. Retrieved from IceBite Blog: Saying Farewell to a Frozen World: http://www.astrobio.net/index.php?option=com_expedition&task=detail&id=3388&type=blog&pid=19
  6. Peter Doran, P. C. (2010). RESULTS FROM ASTEP AND OTHER ASTROBIOLOGY FIELD CAMPAIGNS II.
  7. Schirber, M. (2010, 01 03). Astrobiology Magazine. Retrieved from First Fossil-Makers in Hot Water: http://www.astrobio.net/exclusive/3418/first-fossil-makers-in-hot-water
  8. Schirber, M. (2010, 02 15). Astrobiology Magazine. Retrieved from Detecting Our Martian Cousins: http://www.astrobio.net/exclusive/3401/detecting-our-martian-cousins