Carbonate oxalate

Last updated

The carbonate oxalates are mixed anion compounds that contain both carbonate (CO3) and oxalate (C2O4) anions. Most compounds incorporate large trivalent metal ions, such as the rare earth elements. Some carbonate oxalate compounds of variable composition are formed by heating oxalates. [1]

Contents

Formation

One method to form carbonate oxalates is to heat a metal salt with ascorbic acid, which decomposes to oxalate and carbonate and combines with the metal. [2]

Reactions

When heated, oxalate carbonates decompose to carbon monoxide and carbonates, which form oxides at higher temperatures. [2]

List

formulanameformula weightcrystal formspace groupunit cell Åvolume Å3densitypropertiesreferences
Sc [3]
K4Ti2O2(C2O4)3·CO3 [4]
[Co*(C2O4)(CO3)]2−anionic complex [5]
[CoIII(CO3)(C2O4)(NH3)2]-anionic complex [6]
CaCu3(TiO)4(C2O4)5(CO3)3·CO2 [7]
Sr[TiO(C2O4)CO3]
[Y(H2O)]2(C2O4)(CO3)2yttrium oxalate carbonate421.876orthorhombicC2221a = 7.8177, b = 14.943, c = 9.4845, Z = 41108.02.526 [8]
Ba[ZrO(C2O4)(CO3)] [9]
[Ce(H2O)]2[(C2O4)2(CO3)]·2.5H2OtriclinicP1_a 6.329 b 8.743 c 13.000, α 105.61° β 90.55° γ 105.10° [10]
Pr4(C2O4)4(CO3)2]·3H2Ocatena(bis(μ4-Oxalato)-(μ3-oxalato)-(μ2-oxalato)-bis(μ6-carbonato)-bis(μ2-aqua)-diaqua-tetra-praseodymium hydrate)triclinicP1_a 6.298 b 8.673 c 12.970, α 105.42° β 90.55° γ 105.01° [11]
Pr2(C2O4)(CO3)2 [12]
Nd4(C2O4)4(CO3)2]·3H2Ocatena-[bis(μ4-Oxalato)-(μ3-oxalato)-(μ2-oxalato)-bis(μ6-carbonato)-bis(μ2-aqua)-diaqua-tetra-neodymium hydrate]triclinicP1_a 6.273(6)Å b 8.616(7)Å c 12.928(9)Å, α 105.50(6)° β 90.52(7)° γ 105.00(6)° [11]
(NH4)2[Nd2(CO3)(C2O4)3(H2O)]·H2Odiammonium aqua—carbonato-tri—oxalato-dineodymium(III) hydratetriclinicP1_a=8.706 b=9.530 c=10.327 α = 73.35° β = 86.90° γ = 80.50° Z=2809.692.808 [13]
Eu4(C2O4)4(CO3)2·3H2Ocatena(bis(μ4-Oxalato)-(μ3-oxalato)-(μ2-oxalato)-bis(μ6-carbonato)-bis(μ2-aqua)-diaqua-tetra-europium hydrate)triclinicP1_a 6.179 b 8.464 c 12.856, α 105.13° β 90.46° γ 104.86° [11]
[Eu(H2O)]2(C2O4)(CO3)2 [14]
[Gd(H2O)]2(C2O4)(CO3)2 [14]
[Tb(H2O)]2(C2O4)(CO3)2 [14]
[Dy(H2O)]2(C2O4)(CO3)2 [14]
[Ho(H2O)]2(C2O4)(CO3)2 [14]
Er2(CO3)2(C2O4)(H2O)2monoclinicCma = 7.773, b = 14.920, c = 4.7309, β = 90.12° Z = 2 [15]
Pb[ZrО(C2O4)CO3]
Pb4(CO3)2(C2O4)(OH)2535.41monoclinicP21/ca=11.8593 b=5.2486 c=9.0997 β =96.669 Z=4562.586.321colourless [16]
(NH4)4[Th(CO3)2(C2O4)2]•0.5Н2O [17]
(NH4)4[Th(CO3)2(C2O4)2]•10Н2O [17]
(CN3H6)3(NH4)[Th(CO3)2(C2O4)2]•3Н2O [17]
(CN3H6)3(NH4)[Th(CO3)3(C2O4)]•1.5Н2O [17]
(CN3H6)3(NH4)[Th(CO3)3(C2O4)]•3Н2O [17]
(CN3H6)6[Th2(CO3)5(C2O4)]hexaguandinium pentacarbonatooxalato dithorium [18]
(CN3H6)6[Th2(CO3)5(C2O4)2]•4Н2O [17]
(CN3H6)6[Th2(CO3)5(C2O4)2]•8Н2O [17]
(CN3H6)6[Th2(CO3)4(C2O4)3]•14Н2O [17]
(CN3H6)8[Th2(CO3)7(C2O4)] [17]
(CN3H6)8[Th2(CO3)7(C2O4)]•5Н2O [17]
(CN3H6)8[Th2(CO3)7(C2O4)]•6Н2O [17]
(CN3H6)8[Th2(CO3)5(C2O4)3]•Н2O [17]
(CN3H6)10[Th2(CO3)8(C2O4)]•8Н2O [17]
Na4[Th2(OH)2(CO3)4(C2O4)]•4Н2O [17]
Na4[Th2(OH)6(CO3)2(C2O4)]•2Н2O [17]
Na8Th(C2O4)2(CO3)4 •11Н2O [19]
Na8[Th(CO3)5(C2O4)]•11Н2O [17]
Na10[Th(CO3)5(C2O4)2]•11Н2O [17]
Na10[Th(CO3)5(C2O4)2]•16Н2O [17]
Na10[Th(OH)2(CO3)3(C2O4)3]•8Н2O [17]
Na10[Th(OH)2(CO3)3(C2O4)3] [17]
Na12[Th(CO3)6(C2O4)2]•11Н2O [17]
K2[Th2(OH)2(CO3)3(C2O4)]•2Н2O [17]
K2[Th2(OH)2(CO3)3(C2O4)] [17]
K4[Th(CO3)3(C2O4)]•6Н2O [17]
K5[Th2(OH)(CO3)4(C2O4)2]•2Н2O [17]
K6[Th(CO3)4(C2O4)]•8Н2O [17]
K6[Th(CO3)3(C2O4)2]•4Н2O [17]
K6[Th2(CO3)5(C2O4)2]•2Н2O [17]
K6[Th2(CO3)4(C2O4)3]•6Н2O [17]
K8[Th2(CO3)5(C2O4)3]•13Н2O [17]
K8[Th2(CO3)5(C2O4)3]•16Н2O [17]
K10[Th2(CO3)7(C2O4)2]•8Н2O [17]
K10[Th2(CO3)7(C2O4)2]•12Н2O [17]
K10[Th2(CO3)7(C2O4)2]•14Н2O [17]
K10[Th2(CO3)5(C2O4)4]•5Н2O [17]
K10[Th2(CO3)5(C2O4)4]•7Н2O [17]
(NH4)(CN3H6)3[(UO2)2(CO3)(C2O4)2(C3H4N2O2)] · H2O [20]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C5H8N2O2)] · 1.5H2Oguanidonium μ-carbonate μ-ethylmethylgyoximatedioxylatediuranylate sesquihydratemonoclinicP21a=6.909 b=15.794 c=30.064 β=96.720° Z=432582.383red plates [20] [21]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C6H8N2O2)] · 3H2O [20]
(NH4)(CN3H6)4[(UO2)2(CO3)(C2O4)2(C6H4N2O2)] · H2O [20]
(CN3H6)4[(UO2)2(C6H8N2O2)(CO3)(C2O4)2] · (C6H10N2O2) · 2H2Oguanidinium (3-methyl-1,2-cyclopenadionedioxime)dioxalato (μ-3-methyl-1,2-cyclopenadionedioxato) μ-carbonatodiuranylate dihydratetriclinicP1_a=9.2474 b=14.8562 c=16.8917 α = 68.504° β = 77.721° γ = 89.792° Z=22102.72.108red [22]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C7H10N2O2)] · H2O [20]
NH4(CN3H6)3[(UO2)2(C7H10N2O2)(CO3)(C2O4)2] · 2H2Oammonium guanidinium dioxalato (μ-3-methyl-1,2-cyclopenadionedioxato) μ-carbonatodiuranylate dihydrateorthorhombicP212121a=9.904 b=17.400 c=18.757 Z=43232.22.393red [22]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C6H10N2O2)] · H2Oguanidinium dioxalato μ-diethylglyoximato μ-carbonatodiuranylate monohydrate1176.59monoclinicP21/na=7.6140 b=15.4388 c=28.010 β=95.99° Z=43274.62.387orange [23]
(CN3H6)2(C2H2N2)[(UO2)2(CO3)(C2O4)2(C6H10N2O2)] · 3H2Oguanidinium ethylenediammonium dioxalato μ-diethylglyoximato μ-carbonatodiuranylate monohydrateorange [23]
[C(NH2)3]10[(UO2)6(μ3-O)2(μ2-OH)2(C2O4)4(CO3)4]· 2H2O2913.21triclinicP1_a=11.5919 b=11.7868 c=13.3545 α = 102.637° β = 93.278° γ = 95.273° Z=11759.72.749yellow [24]
PuPlutonium(III) oxalate carbonate [25]

Related Research Articles

A solubility chart is a chart describing whether the ionic compounds formed from different combinations of cations and anions dissolve in or precipitate from solution.

<span class="mw-page-title-main">Uranyl</span> Oxycation of uranium

The uranyl ion is an oxycation of uranium in the oxidation state +6, with the chemical formula UO2+
2
. It has a linear structure with short U–O bonds, indicative of the presence of multiple bonds between uranium and oxygen. Four or more ligands may be bound to the uranyl ion in an equatorial plane around the uranium atom. The uranyl ion forms many complexes, particularly with ligands that have oxygen donor atoms. Complexes of the uranyl ion are important in the extraction of uranium from its ores and in nuclear fuel reprocessing.

<span class="mw-page-title-main">Double salt</span>

A double salt is a salt that contains two or more different cations or anions. Examples of double salts include alums (with the general formula MIMIII(SO4)2·12H2O) and Tutton's salts (with the general formula (MI)2MII(SO4)2·6H2O). Other examples include potassium sodium tartrate, ammonium iron(II) sulfate (Mohr's salt), potassium uranyl sulfate (used to discover radioactivity) and bromlite BaCa(CO3)2. The fluorocarbonates contain fluoride and carbonate anions. Many coordination complexes form double salts.

<span class="mw-page-title-main">Potassium ferrioxalate</span> Chemical compound

Potassium ferrioxalate, also called potassium trisoxalatoferrate or potassium tris(oxalato)ferrate(III) is a chemical compound with the formula K3[Fe(C2O4)3]. It often occurs as the trihydrate K3[Fe(C2O4)3]·3H2O. Both are crystalline compounds, lime green in colour.

<span class="mw-page-title-main">Manganese(II) oxide</span> Chemical compound

Manganese(II) oxide is an inorganic compound with chemical formula MnO. It forms green crystals. The compound is produced on a large scale as a component of fertilizers and food additives.

<span class="mw-page-title-main">Magnesium oxalate</span> Magnesium compound

Magnesium oxalate is an organic compound comprising a magnesium cation with a 2+ charge bonded to an oxalate anion. It has the chemical formula MgC2O4. Magnesium oxalate is a white solid that comes in two forms: an anhydrous form and a dihydrate form where two water molecules are complexed with the structure. Both forms are practically insoluble in water and are insoluble in organic solutions.

The oxalatonickelates are a class of compounds that contain nickel complexed by oxalate groups. They form a series of double salts, and include clusters with multiple nickel atoms. Since oxalate functions as a bidentate ligand it can satisfy two coordinate positions around the nickel atom, or it can bridge two nickel atoms together.

<span class="mw-page-title-main">Caesium oxalate</span> Chemical compound

Caesium oxalate (standard IUPAC spelling) dicesium oxalate, or cesium oxalate (American spelling) is the oxalate of caesium. Caesium oxalate has the chemical formula of Cs2C2O4.

<span class="mw-page-title-main">Fluorocarbonate</span> Class of chemical compounds

A carbonate fluoride, fluoride carbonate, fluorocarbonate or fluocarbonate is a double salt containing both carbonate and fluoride. The salts are usually insoluble in water, and can have more than one kind of metal cation to make more complex compounds. Rare-earth fluorocarbonates are particularly important as ore minerals for the light rare-earth elements lanthanum, cerium and neodymium. Bastnäsite is the most important source of these elements. Other artificial compounds are under investigation as non-linear optical materials and for transparency in the ultraviolet, with effects over a dozen times greater than Potassium dideuterium phosphate.

The carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of halocarbonates. In turn these halocarbonates are a part of mixed anion materials.

The borate carbonates are mixed anion compounds containing both borate and carbonate ions. Compared to mixed anion compounds containing halides, these are quite rare. They are hard to make, requiring higher temperatures, which are likely to decompose carbonate to carbon dioxide. The reason for the difficulty of formation is that when entering a crystal lattice, the anions have to be correctly located, and correctly oriented. They are also known as borocarbonates. Although these compounds have been termed carboborate, that word also refers to the C=B=C5− anion, or CB11H12 anion. This last anion should be called 1-carba-closo-dodecaborate or monocarba-closo-dodecaborate.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

<span class="mw-page-title-main">Oxalate phosphate</span> Chemical compound containing oxalate and phosphate anions

The oxalate phosphates are chemical compounds containing oxalate and phosphate anions. They are also called oxalatophosphates or phosphate oxalates. Some oxalate-phosphate minerals found in bat guano deposits are known. Oxalate phosphates can form metal organic framework compounds.

Manganese oxalate is a chemical compound, a salt of manganese and oxalic acid with the chemical formula MnC
2
O
4
. The compound creates light pink crystals, does not dissolve in water, and forms crystalline hydrates. It occurs naturally as the mineral Lindbergite.

<span class="mw-page-title-main">Neodymium acetate</span> Compound of neodymium

Neodymium acetate is an inorganic salt composed of a neodymium atom trication and three acetate groups as anions where neodymium exhibits the +3 oxidation state. It has a chemical formula of Nd(CH3COO)3 although it can be informally referred to as NdAc because Ac is an informal symbol for acetate. It commonly occurs as a light purple powder.

<span class="mw-page-title-main">Niobium oxalate</span> Chemical compound

Niobium(V) oxalate is the hydrogen oxalate salt of niobium(V). The neutral salt has not been prepared.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

<span class="mw-page-title-main">Rubidium oxalate</span> Chemical compound

Rubidium oxalate is the oxalate salt of rubidium, with the chemical formula of Rb2C2O4.

Sodium tris(carbonato)cobalt(III) is the name given to the inorganic compound with the formula Na3Co(CO3)3•3H2O. The salt contains an olive-green metastable cobalt(III) coordination complex. The salt is sometimes referred to as the “Field-Durrant precursor” and is prepared by the “Field-Durrant synthesis”. It is used in the synthesis of other cobalt(III) complexes. Otherwise cobalt(III) complexes are generated from cobalt(II) precursors, a process that requires an oxidant.

References

  1. Cindrić, Marina; Strukan, Neven; Vrdoljak, Višnja; Devčić, Maja; Kamenar, Boris (2002-01-01). "Synthesis of Molybdovanadates Coordinated by Oxalato Ligands. The Crystal Structure of K 6 [Mo 6 V 2 O 24 (C 2 O 4 ) 2 ]·6H 2 O". Journal of Coordination Chemistry. 55 (6): 705–710. doi:10.1080/00958970290027570. ISSN   0095-8972. S2CID   93516054.
  2. 1 2 Ma, Lin; Zhou, Xiaoliang; Yan, Zhengguang; Han, Xiaodong (May 2015). "Hydrothermal synthesis of [Y(H2O) ]2(C2O4)(CO3)2 powder using ascorbic acid". Advanced Powder Technology. 26 (3): 853–856. doi:10.1016/j.apt.2015.02.015.
  3. Fedorov, I. A.; Balakaeva, T. A. (1965-05-01). "SCANDIUM OXALATE-CARBONATE COMPOUNDS". Zh. Neorgan. Khim. (in Russian). 10. OSTI   4589394.
  4. Muraleedharan, K.; Labeeb, P.; Mujeeb, V. M. Abdul; Aneesh, M. H.; Devi, T. Ganga; Kannan, M. P. (2011-02-01). "Effect of Particle Size on Non-Isothermal Decomposition of Potassium Titanium Oxalate". Zeitschrift für Physikalische Chemie. 225 (2): 169–181. doi:10.1524/zpch.2011.0051. ISSN   2196-7156. S2CID   101959591.
  5. Matsuura, Tatsuo; Hashimoto, Tetsuo (December 1966). "Szilard-Chalmers Reaction of Anionic Cobalt Complex Ions on Ion-Exchange Resins". Bulletin of the Chemical Society of Japan. 39 (12): 2647–2652. doi: 10.1246/bcsj.39.2647 . ISSN   0009-2673.
  6. Enomoto, Yoshihiro; Ito, Teiichi; Shibata, Muraji (1974-05-05). "The Preparation Ofcis,Cis-Dicyanocarbonatodiamminecobalte(III) Andcis,Cis-Oxalatodiaquodiamminecobalt(III) Complexes". Chemistry Letters. 3 (5): 423–426. doi: 10.1246/cl.1974.423 . ISSN   0366-7022.
  7. Etape, Ekane Peter; Foba-Tendo, Josepha; Namondo, Beckley Victorine; Yufanyi, Divine Mbom; Tedjieukeng, Hypolite Mathias Kamta; Fomekonga, Roussin Lontio; Ngolui, Lambi John (2020-10-08). "Nanosize CaCu 3 Ti 4 O 12 Green Synthesis and Characterization of a Precursor Oxalate Obtained from Averrhoa carambola Fruit Juice and Its Thermal Decomposition to the Perovskite". Journal of Nanomaterials. 2020: 1–7. doi: 10.1155/2020/8830136 . ISSN   1687-4110.
  8. Bataille, Thierry; Louër, Daniel (2000-12-01). "Powder and single-crystal X-ray diffraction study of the structure of [Y(H 2 O)] 2 (C 2 O 4 )(CO 3 ) 2". Acta Crystallographica Section B: Structural Science. 56 (6): 998–1002. doi:10.1107/S0108768100010004. PMID   11099966.
  9. ВМ Погибко, ВВ Приседский, ИЛ Сидак (2010). "МЕХАНИЗМ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ ОКСАЛАТНОГО ПРЕКУРСОРА BaZrO3" (PDF). Archived (PDF) from the original on 2021-07-28.{{cite web}}: CS1 maint: multiple names: authors list (link)
  10. Runde, Wolfgang (2009). "Directed Synthesis of Crystalline Plutonium(III) and (IV) Oxalates: Accessing Redox-Controlled Separations in Acidic Solutions". Inorganic Chemistry. 48 (13): 5967–5972. doi:10.1021/ic900344u. PMID   19485387. S2CID   13498583.
  11. 1 2 3 Romero, S.; Mosset, A.; Trombe, J.C. (December 1996). "Two New Families of Lanthanide Mixed-Ligand Complexes, Oxalate–Carbonate and Oxalate–Formate: Synthesis and Structure of [Ce(H2O)]2(C2O4)2(CO3)·2.5 H2O and Ce(C2O4)(HCO2)". Journal of Solid State Chemistry. 127 (2): 256–266. Bibcode:1996JSSCh.127..256R. doi:10.1006/jssc.1996.0382.
  12. Glasner, A.; Steinberg, M. (December 1961). "Thermal decomposition of the light rare earth oxalates". Journal of Inorganic and Nuclear Chemistry. 22 (1–2): 39–48. doi:10.1016/0022-1902(61)80227-3.
  13. Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée (2002-10-15). "A neodymium(III)–ammonium complex involving oxalate and carbonate ligands: (NH 4 ) 2 [Nd 2 (C 2 O 4 ) 3 (CO 3 )(H 2 O)]·H 2 O". Acta Crystallographica Section C: Crystal Structure Communications. 58 (10): m517–m520. doi:10.1107/S0108270102014737. ISSN   0108-2701. PMID   12359932.
  14. 1 2 3 4 5 Romero, S (1997). "A new family of lanthanide oxalate carbonate, [Ln(H2O)]2(C2O4)(CO3)2 with Ln = Eu...Ho, presenting a relatively open framework". European Journal of Solid State and Inorganic Chemistry. 34: 209–219.
  15. Müller-Buschbaum, Klaus (2002). "Er2(CO3)2(C2O4)(H2O)2 — Synthese, Kristallstruktur und thermischer Abbau eines Carbonat-Oxalat-Hydrates des Erbiums". Zeitschrift für anorganische und allgemeine Chemie (in German). 628 (8): 1761–1764. doi:10.1002/1521-3749(200208)628:8<1761::AID-ZAAC1761>3.0.CO;2-1. ISSN   1521-3749.
  16. Yang, Hui; Mao, Feifei; Xu, Cuixia (2018-05-24). "Syntheses, Crystal Structures and Properties of Two Novel Mixed Anion Hybrids with Formulas of Pb 6 O 2 (BO 3 ) 2 (C 2 O 4 ) and Pb 4 (CO 3 ) 2 (C 2 O 4 )(OH) 2". ChemistrySelect. 3 (19): 5431–5438. doi:10.1002/slct.201801072. ISSN   2365-6549.
  17. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Bagnall, Kenneth W. (2013-12-12). Th Thorium: Compounds with Carbon: Carbonates, Thiocyanates, Alkoxides, Carboxylates. Springer Science & Business Media. pp. 98–102. ISBN   978-3-662-06315-6.
  18. Bagnall, Kenneth W. (2013-12-12). Th Thorium: Compounds with Carbon: Carbonates, Thiocyanates, Alkoxides, Carboxylates. Springer Science & Business Media. p. 10. ISBN   978-3-662-06315-6.
  19. L. N. Essen, D. P. Alekseeva. "The production of mixed oxalate-carbonate complex compounds of thorium", Dokl. Akad. Nauk SSSR, 146:2 (1962), 380–382". www.mathnet.ru. Archived from the original on 2021-07-27. Retrieved 2021-07-27.
  20. 1 2 3 4 5 Beirakhov, A. G.; Orlova, I. M.; Mikhailov, Yu. N. (December 2014). "Coordination modes of α-dioximes in uranyl complexes". Russian Journal of Inorganic Chemistry. 59 (14): 1679–1690. doi:10.1134/S0036023614140022. ISSN   0036-0236. S2CID   95903987.
  21. Beirakhov, A. G.; Orlova, I. M.; Il’in, E. G.; Aleksandrov, G. G.; Kanishcheva, A. S.; Mikhailov, Yu. N. (September 2010). "Uranyl complexes with ethylmethylglyoxime". Russian Journal of Inorganic Chemistry. 55 (9): 1373–1380. doi:10.1134/S003602361009007X. ISSN   0036-0236. S2CID   97458234.
  22. 1 2 Beirakhov, A. G.; Orlova, I. M.; Il’in, E. G.; Kanishcheva, A. S.; Churakov, A. V.; Mikhailov, Yu. N. (July 2012). "Uranyl complexes with methyl derivatives of alicyclic dioximes". Russian Journal of Inorganic Chemistry. 57 (7): 945–952. doi:10.1134/S0036023612070054. ISSN   0036-0236. S2CID   97320941.
  23. 1 2 Beirakhov, A. G.; Orlova, I. M.; Rotov, A. V.; Il’in, E. G.; Goeva, L. V.; Surazhskaya, M. D.; Churakov, A. V.; Mikhailov, Yu. N. (December 2016). "Conformation of diethylglyoxime in uranyl complexes". Russian Journal of Inorganic Chemistry. 61 (12): 1522–1529. doi:10.1134/S0036023616120032. ISSN   0036-0236. S2CID   100478539.
  24. Fedoseev, A. M.; Grigor’ev, M. S.; Yusov, A. B. (September 2012). "Interaction of tetravalent actinides and Np(V) with some hydroxy carboxylic acids". Radiochemistry. 54 (5): 443–451. doi:10.1134/S1066362212050049. ISSN   1066-3622. S2CID   95387998.
  25. Kartushova, R. E.; Rudenko, T. I.; Fomin, V. V. (1958). "Thermal decomposition of tetravalent and trivalent plutonium oxalates" (PDF). The Soviet Journal of Atomic Energy. 5 (1): 831–835. doi:10.1007/BF01505392. S2CID   94605282.