Cuprate

Last updated

Cuprates are a class of compounds that contain copper (Cu) atom(s) in an anion. They can be broadly categorized into two main types:

Contents

1. Inorganic cuprates: These compounds have a general formula of XYCumOn. Some of them are non-stoichiometric. Many of these compounds are known for their superconducting properties.[ citation needed ] An example of an inorganic cuprate is the tetrachloridocuprate(II) or tetrachlorocuprate(II) ([ Cu Cl 4]2−), an anionic coordination complex that features a copper atom in an oxidation state of +2, surrounded by four chloride ions.

2. Organic cuprates: These are organocopper compounds, some of which having a general formula of [CuR2], where copper is in an oxidation state of +1, where at least one of the R groups can be any organic group. These compounds, characterized by copper bonded to organic groups, are frequently used in organic synthesis due to their reactivity.[ citation needed ] An example of an organic cuprate is dimethylcuprate(I) anion [Cu(CH3)2].

One of the most studied cuprates is Y Ba 2 Cu 3 O 7, a high-temperature superconducting material. This oxide cuprate has been the subject of extensive research due to its ability to conduct electricity without resistance at relatively high temperatures.[ citation needed ]

The term 'cuprate' originates from 'cuprum', the Latin word for copper. It is primarily used in the context of oxide materials, anionic coordination complexes, and anionic organocopper compounds, reflecting the diverse roles of copper in chemistry. The term is mainly used in three contexts: oxide materials, anionic coordination complexes, and anionic organocopper compounds.[ citation needed ]

Oxide cuprates

One of the simplest oxide-based cuprates is potassium cuprate(III) KCuO2. This species can be viewed as the K + salt of the polyanion [CuO2]n. As such the material is classified as an oxide cuprate. This dark blue diamagnetic solid is produced by heating potassium peroxide and copper(II) oxide in an atmosphere of oxygen: [1]

K2O2 + 2 CuO → 2 KCuO2

Other cuprates(III) of alkali metals are known; in addition, the structures of KCuO2 (potassium cuprate(III)), RbCuO2 (rubidium cuprate(III)) and CsCuO2 (caesium cuprate(III)) have been determined as well. [2]

KCuO2 was discovered first in 1952 by V. K. Wahl and W. Klemm, they synthesized this compound by heating copper(II) oxide and potassium superoxide in an atmosphere of oxygen. [3]

2 KO2 + 2 CuO → KCuO2 + O2

It can also be synthesized by heating potassium superoxide and copper powder: [4]

KO2 + Cu → KCuO2

KCuO2 reacts with the air fairly slowly. It starts to decompose at 760 K (487 °C; 908 °F) and its color changes from blue to pale green at 975 K (702 °C; 1,295 °F). Its melting point is 1,025 K (752 °C; 1,385 °F). [3] [4]

RbCuO2 (blue-black) and CsCuO2 (black) can be prepared by reaction of rubidium oxide and caesium oxide with copper(II) oxide powders, at 675 K (402 °C; 755 °F) and 655 K (382 °C; 719 °F) in oxygen atmosphere, respectively. Either of them reacts with the air fast, unlike KCuO2. [4]

In fact, KCuO2 is a non-stoichiometric compound, so the more exact formula is KCuOx and x is very close to 2. This causes the formation of defects in the crystal structure, and this leads to the tendency of this compound to be reduced. [4]

Sodium cuprate(III) NaCuO2 can be produced by using hypochlorites or hypobromites to oxidize copper hydroxide under alkaline and low temperature conditions. [5]

2 NaOH + CuSO4 → Cu(OH)2
Cu(OH)2 + 2 NaOH + NaClO → 2 NaCuO2 + NaCl + H2O

Cuprates(III) are not stable in water, and they can oxidize water as well. [5]

4 CuO2 + 2 H2O → 4 CuO + O2↑ + 4 OH

Sodium cuprate(III) is reddish-brown, but turns black gradually as it decomposes to copper(II) oxide. [5] In order to prevent decomposition, it must be prepared at low temperature in the absence of light.[ citation needed ]

Coordination complexes

Copper forms many anionic coordination complexes with negatively charged ligands such as cyanide, hydroxide, and halides, as well as alkyls and aryls.

Copper(I)

Cuprates containing copper(I) tend to be colorless, reflecting their d10 configuration. Structures range from linear 2-coordinate, trigonal planar, and tetrahedral molecular geometry. Examples include linear [CuCl 2] and trigonal planar [CuCl3]2−. [6] Cyanide gives analogous complexes but also the trianionic tetracyanocuprate(I), [Cu(CN)4]3−. [7] Dicyanocuprate(I), [Cu(CN)2], exists in both molecular or polymeric motifs, depending on the countercation. [8]

Copper(II)

Caesium salt of hexafluorocuprate(IV) CCs2CuF6.svg
Caesium salt of hexafluorocuprate(IV)

Cuprates containing copper(II) include trichlorocuprate(II), [CuCl3], which is dimeric, and square-planar tetrachlorocuprate(II), [CuCl4]2−, and pentachlorocuprate(II), [CuCl5]3−. [9] [10] 3-Coordinate chlorocuprate(II) complexes are rare. [11]

Tetrachlorocuprate(II) complexes tend to adopt flattened tetrahedral geometry with orange colors. [12] [13] [14] [15]

Sodium tetrahydroxycuprate(II) (Na2[Cu(OH)4]) is an example of a homoleptic (all ligands being the same) hydroxide complex. [16]

Cu(OH)2 + 2 NaOH → Na2[Cu(OH)4]

Copper(III) and copper(IV)

Hexafluorocuprate(III) [CuF6]3− and hexafluorocuprate(IV) [CuF6]2− are rare examples of copper(III) and copper(IV) complexes. They are strong oxidizing agents.

Organic cuprates

Structure of lithium diphenylcuprate(I) etherate,
2[Ph2Cu] Li*2OEt2. Lithium-diphenylcuprate-etherate-dimer-from-xtal-2D-skeletal.png
Structure of lithium diphenylcuprate(I) etherate, 2[Ph2Cu] Li·2OEt 2.

Cuprates have a role in organic synthesis. They are invariably Cu(I), although Cu(II) or even Cu(III) intermediates are invoked in some chemical reactions. Organic cuprates often have the idealized formulas [CuR2] and [CuR3]2−, both of which contain copper in an oxidation state of +1, where R is an alkyl or aryl. These reagents find use as nucleophilic alkylating reagents. [18]

See also

Related Research Articles

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Gilman reagent</span> Class of chemical compounds

A Gilman reagent is an] (diorganocopper) compound with the formula Li[CuR2], where R is an alkyl or aryl. They are colorless solids.

<span class="mw-page-title-main">Copper(II) nitrate</span> Chemical compound

Copper(II) nitrate describes any member of the family of inorganic compounds with the formula Cu(NO3)2(H2O)x. The hydrates are blue solids. Anhydrous copper nitrate forms blue-green crystals and sublimes in a vacuum at 150-200 °C. Common hydrates are the hemipentahydrate and trihydrate.

<span class="mw-page-title-main">Lead(II) chloride</span> Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

<span class="mw-page-title-main">Copper(II) oxide</span> Chemical compound – an oxide of copper with formula CuO

Copper(II) oxide or cupric oxide is an inorganic compound with the formula CuO. A black solid, it is one of the two stable oxides of copper, the other being Cu2O or copper(I) oxide (cuprous oxide). As a mineral, it is known as tenorite. It is a product of copper mining and the precursor to many other copper-containing products and chemical compounds.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

<span class="mw-page-title-main">Copper(II) hydroxide</span> Hydroxide of copper

Copper(II) hydroxide is the hydroxide of copper with the chemical formula of Cu(OH)2. It is a pale greenish blue or bluish green solid. Some forms of copper(II) hydroxide are sold as "stabilized" copper(II) hydroxide, although they likely consist of a mixture of copper(II) carbonate and hydroxide. Cupric hydroxide is a strong base, although its low solubility in water makes this hard to observe directly.

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

<span class="mw-page-title-main">Copper(I) cyanide</span> Chemical compound

Copper(I) cyanide is an inorganic compound with the formula CuCN. This off-white solid occurs in two polymorphs; impure samples can be green due to the presence of Cu(II) impurities. The compound is useful as a catalyst, in electroplating copper, and as a reagent in the preparation of nitriles.

<span class="mw-page-title-main">Chromium compounds</span> Chemical compounds containing chromium

Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals. The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.

Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. Iron is sometimes considered as a prototype for the entire block of transition metals, due to its abundance and the immense role it has played in the technological progress of humanity. Its 26 electrons are arranged in the configuration [Ar]3d64s2, of which the 3d and 4s electrons are relatively close in energy, and thus it can lose a variable number of electrons and there is no clear point where further ionization becomes unprofitable.

<span class="mw-page-title-main">Organocopper chemistry</span> Compound with carbon to copper bonds

Organocopper chemistry is the study of the physical properties, reactions, and synthesis of organocopper compounds, which are organometallic compounds containing a carbon to copper chemical bond. They are reagents in organic chemistry.

Reactions of organocopper reagents involve species containing copper-carbon bonds acting as nucleophiles in the presence of organic electrophiles. Organocopper reagents are now commonly used in organic synthesis as mild, selective nucleophiles for substitution and conjugate addition reactions.

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

<span class="mw-page-title-main">Potassium hexafluorocuprate(III)</span> Inorganic paramagnetic solid

Potassium hexafluorocuprate(III) is an inorganic compound with the chemical formula K3CuF6. It is a green paramagnetic solid, a relatively rare example of a copper(III) compound.

Transition metal amino acid complexes are a large family of coordination complexes containing the conjugate bases of the amino acids, the 2-aminocarboxylates. Amino acids are prevalent in nature, and all of them function as ligands toward the transition metals. Not included in this article are complexes of the amides and ester derivatives of amino acids. Also excluded are the polyamino acids including the chelating agents EDTA and NTA.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Copper compounds</span> Chemical compounds containing copper

Copper forms a rich variety of compounds, usually with oxidation states +1 and +2, which are often called cuprous and cupric, respectively. Copper compounds, whether organic complexes or organometallics, promote or catalyse numerous chemical and biological processes.

Neptunium compounds are compounds containg the element neptunium (Np). Neptunium has five ionic oxidation states ranging from +3 to +7 when forming chemical compounds, which can be simultaneously observed in solutions. It is the heaviest actinide that can lose all its valence electrons in a stable compound. The most stable state in solution is +5, but the valence +4 is preferred in solid neptunium compounds. Neptunium metal is very reactive. Ions of neptunium are prone to hydrolysis and formation of coordination compounds.

References

  1. G. Brauer, ed. (1963). "Potassium Cuprate (III)". Handbook of Preparative Inorganic Chemistry. Vol. 2 (2nd ed.). NY: Academic Press. p. 1015.
  2. Hestermann, Klaus; Hoppe, Rudolf (1969). "Die Kristallstruktur von KCuO2, RbCuO2 und CsCuO2". Zeitschrift für Anorganische und Allgemeine Chemie. 270 (1–4): 69–75. doi:10.1002/zaac.19693670506.
  3. 1 2 Wahl, Von Kurt; Klemm, Wilhelm (1952). "Über Kaliumcuprat(III)". Zeitschrift für Anorganische und Allgemeine Chemie. 270 (1–4): 69–75. doi:10.1002/zaac.19522700109 . Retrieved January 20, 2023.
  4. 1 2 3 4 Costa, Giorgio A.; Kaiser, Elena (1995). "Structural and thermal properties of the alkaline cuprate KCuO2". Thermochimica Acta. 269–270: 591–598. doi:10.1016/0040-6031(95)02575-8 . Retrieved January 20, 2023.
  5. 1 2 3 Magee, J. S.; Wood, R. H. (1965). "Studies of Sodium Cuprate(III) Stability". Canadian Journal of Chemistry. 43 (5): 1234–1237. doi:10.1139/v65-164.
  6. Stricker, Marion; Linder, Thomas; Oelkers, Benjamin; Sundermeyer, Jörg (2010). "Cu(I)/(II) based catalytic ionic liquids, their metallo-laminate solid state structures and catalytic activities in oxidative methanol carbonylation". Green Chemistry. 12 (9): 1589. doi:10.1039/c003948a.
  7. Kroeker, Scott; Wasylishen, Roderick E. (1999). "A multinuclear magnetic resonance study of crystalline tripotassium tetracyanocuprate". Canadian Journal of Chemistry. 77 (11): 1962–1972. doi:10.1139/v99-181.
  8. Bowmaker, Graham A.; Hartl, Hans; Urban, Victoria (2000). "Crystal Structures and Vibrational Spectroscopy of [NBu4][Cu(CN)X] (X = Br, I) and [NBu4][Cu3(CN)4]·CH3CN". Inorganic Chemistry. 39 (20): 4548–4554. doi:10.1021/ic000399s.
  9. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  10. Willett, Roger D.; Butcher, Robert E.; Landee, Christopher P.; Twamley, Brendan (2006). "Two Halide Exchange in Copper(II) Halide Dimers: (4,4-Bipyridinium)Cu2Cl6−xBRX". Polyhedron. 25 (10): 2093–2100. doi:10.1016/j.poly.2006.01.005.
  11. Hasselgren, Catrin; Jagner, Susan; Dance, Ian (2002). "Three-Coordinate [CuIIX3] (X = Cl, Br), Trapped in a Molecular Crystal". Chemistry – A European Journal. 8 (6): 1269–1278. doi:10.1002/1521-3765(20020315)8:6<1269::AID-CHEM1269>3.0.CO;2-9. PMID   11921210.
  12. Mahoui, A.; Lapasset, J.; Moret, J.; Saint Grégoire, P. (1996). "Tetraethylammonium Tetramethylammonium Tetrachlorocuprate(II), [(C2H5)4N][(CH3)4N][CuCl4]". Acta Crystallographica Section C. 52 (11): 2674–2676. doi:10.1107/S0108270196009031.
  13. Guillermo Mínguez Espallargas; Lee Brammer; Jacco van de Streek; Kenneth Shankland; Alastair J. Florence; Harry Adams (2006). "Reversible Extrusion and Uptake of HCl Molecules by Crystalline Solids Involving Coordination Bond Cleavage and Formation". J. Am. Chem. Soc. 128 (30): 9584–9585. doi:10.1021/ja0625733. PMID   16866484.
  14. Kelley, A.; Nalla, S.; Bond, M. R. (2015). "The square-planar to flattened-tetrahedral CuX42− (X = Cl, Br) structural phase transition in 1,2,6-trimethylpyridinium salts". Acta Crystallogr. B . 71 (Pt 1): 48–60. doi:10.1107/S205252061402664X. PMID   25643715.
  15. Egon Wiberg; Nils Wiberg; Arnold Frederick Holleman (2001). Inorganic Chemistry. Academic Press. pp. 1252–1264. ISBN   0-12-352651-5.
  16. Brauer, G., ed. (1963). "Sodium Tetrahydroxocuprate(II)". Handbook of Preparative Inorganic Chemistry. Vol. 1 (2nd ed.). New York, NY: Academic Press. p. 1015.
  17. Lorenzen, Nis Peter; Weiss, Erwin (1990). "Synthesis and Structure of a Dimeric Lithium Diphenylcuprate:[{Li(OEt2)}(CuPh2)]2". Angewandte Chemie International Edition in English. 29 (3): 300. doi:10.1002/anie.199003001.
  18. Louis S. Hegedus (1999). Transition metals in the synthesis of complex organic molecules. University Science Books. pp. 61–65. ISBN   1-891389-04-1.