Gold(III) chloride

Last updated

Contents

Gold(III) chloride
AuCl3 structure.svg
Gold(III)-chloride-dimer-3D-balls.png
Gold(III)-chloride-xtal-3D-SF-B.png
Crystal structure of AuCl3
Names
IUPAC name
Gold(III) trichloride
Other names
Auric chloride
Gold trichloride
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.033.280 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • MD5420000
UNII
  • InChI=1S/Au.3ClH/h;3*1H/q+3;;;/p-3 Yes check.svgY
    Key: RJHLTVSLYWWTEF-UHFFFAOYSA-K Yes check.svgY
  • InChI=1/Au.3ClH/h;3*1H/q+3;;;/p-3
    Key: RJHLTVSLYWWTEF-DFZHHIFOAC
  • Cl[Au-]1(Cl)[Cl+][Au-]([Cl+]1)(Cl)Cl
Properties
AuCl3
(exists as Au2Cl6)
Molar mass 606.6511 g/mol
AppearanceRed crystals (anhydrous); golden, yellow crystals (monohydrate) [1]
Density 4.7 g/cm3
Melting point 160 °C (320 °F; 433 K) (decomposes)
68 g/100 ml (20 °C)
Solubility soluble in ether and ethanol, slightly soluble in liquid ammonia, insoluble in benzene
−112·10−6 cm3/mol
Structure
monoclinic
P21/C
a = 6.57 Å, b = 11.04 Å, c = 6.44 Å
α = 90°, β = 113.3°, γ = 90° [2]
Square planar
Thermochemistry
−117.6 kJ/mol [3]
Hazards [4]
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P305+P351+P338
Related compounds
Other anions
Gold(III) fluoride
Gold(III) bromide
Other cations
Gold(I) chloride
Silver(I) chloride
Platinum(II) chloride
Mercury(II) chloride
Supplementary data page
Gold(III) chloride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2 Cl 6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

Structure

AuCl3 exists as a chloride-bridged dimer both as a solid and vapour, at least at low temperatures. [2] Gold(III) bromide behaves analogously. [1] The structure is similar to that of iodine(III) chloride.

Each gold center is square planar in gold(III) chloride, which is typical of a metal complex with a d8 electron count. The bonding in AuCl3 is considered somewhat covalent. [1]

Properties

Gold(III) chloride is a diamagnetic light-sensitive red crystalline solid that forms the orange monohydrate, AuCl3 · H2O; the anhydrous and monohydrate are both hygroscopic. The anhydrous form absorbs moisture from the air to form the monohydrate which can be reversed by the addition of thionyl chloride. [5]

Preparation

Gold(III) chloride was first prepared in 1666 by Robert Boyle by the reaction of metallic gold and chlorine gas at 180 °C: [1] [6] [7]

2 Au + 3 Cl2 → Au2Cl6

This method is the most common method of preparing gold(III) chloride. It can also be prepared by reacting gold powder with iodine monochloride: [5]

2 Au + 6 ICl → 2 AuCl3 + 3 I2

The chlorination reaction can be conducted in the presence of tetrabutylammonium chloride, the product being the lipophilic salt tetrabutylammonium tetrachloraurate. [8]

Another method of preparation is via chloroauric acid, which is obtained by first dissolving the gold powder in aqua regia to give chloroauric acid: [9]

Au + HNO3 + 4 HCl → H[AuCl4] + 2 H2O + NO

The resulting chloroauric acid is subsequently heated in an inert atmosphere at around 100 °C to give Au2Cl6: [10] [11]

2 H[AuCl4] → Au2Cl6 + 2 HCl

Reactions

Concentrated aqueous solution of gold(III) chloride Gold(III) chloride solution.jpg
Concentrated aqueous solution of gold(III) chloride

Decomposition

Anhydrous AuCl3 begins to decompose to AuCl (gold(I) chloride) at around 160 °C (320 °F), however, this, in turn, undergoes disproportionation at higher temperatures to give gold metal and AuCl3: [5] [10]

AuCl3 → AuCl + Cl2 (160 °C)
3 AuCl → AuCl3 + 2 Au (>210 °C)

Due to the disproportionation of AuCl, above 210 °C, most of the gold is in the form of elemental gold. [12] [11]

Gold(III) chloride is more stable in a chlorine atmosphere and can sublime at around 200 °C without any decomposition. In a chlorine atmosphere, AuCl3 decomposes at 254 °C yielding AuCl which in turn decomposes at 282 °C to elemental gold. [2] [13] This fact that no gold chlorides can exist above 400 °C is used in the Miller process. [14]

Other reactions

AuCl3 is a Lewis acid and readily forms complexes. For example, it reacts with hydrochloric acid to form chloroauric acid (H[AuCl4]): [15]

HCl + AuCl3 → H+ + [AuCl4]

Chloroauric acid is the product formed when gold dissolves in aqua regia. [15]

On contact with water, AuCl3 forms acidic hydrates and the conjugate base [AuCl3(OH)]. A Fe 2+ ion may reduce it, causing elemental gold to be precipitated from the solution. [1] [16]

Other chloride sources, such as KCl, also convert AuCl3 into [AuCl4]. Aqueous solutions of AuCl3 react with an aqueous base such as sodium hydroxide to form a precipitate of Au(OH)3, which will dissolve in excess NaOH to form sodium aurate (NaAuO2). If gently heated, Au(OH)3 decomposes to gold(III) oxide, Au2O3, and then to gold metal. [15] [17] [18] [19]

Gold(III) chloride is the starting point for the chemical synthesis of many other gold compounds. For example, the reaction with potassium cyanide produces the water-soluble complex, K[Au(CN)4]: [20]

AuCl3 + 4 KCN → K[Au(CN)4] + 3 KCl

Gold(III) fluoride can be also produced from gold(III) chloride by reacting it with bromine trifluoride. [15]

Gold(III) chloride reacts with benzene under mild conditions (reaction times of a few minutes at room temperature) to produce the dimeric phenylgold(III) dichloride; a variety of other arenes undergo a similar reaction: [21]

2 PhH + Au2Cl6[PhAuCl2]2 + 2 HCl

Gold(III) chloride reacts with carbon monoxide in a variety of ways. For example, the reaction of anhydrous AuCl3 and carbon monoxide under SOCl2 produces gold(I,III) chloride with Au(CO)Cl as an intermediate: [22] [23]

2 AuCl3 + 2 CO → Au4Cl8 + 2 COCl2

If carbon monoxide is in excess, Au(CO)Cl is produced instead. [24] [25]

However, under tetrachloroethylene and at 120 °C, gold(III) chloride is first reduced to gold(I) chloride, which further reacts to form Au(CO)Cl. AuCl3 is also known to catalyze the production of phosgene. [25] [26]

Applications

Although gold(III) chloride has no commercial uses, it has many uses in the laboratory. [5]

Organic synthesis

Since 2003, AuCl3 has attracted the interest of organic chemists as a mild acid catalyst for various reactions, [27] although no transformations have been commercialised. Gold(III) salts, especially Na[AuCl4], provide an alternative to mercury(II) salts as catalysts for reactions involving alkynes. An illustrative reaction is the hydration of terminal alkynes to produce acetyl compounds. [28]

Example of gold-catalyzed alkyne hydration reaction.svg

Gold catalyses the alkylation of certain aromatic rings and the conversion of furans to phenols. Some alkynes undergo amination in the presence of gold(III) catalysts. For example, a mixture of acetonitrile and gold(III) chloride catalyses the alkylation of 2-methylfuran by methyl vinyl ketone at the 5-position: [29]

Alkylation reaction of 2-methylfuran with methyl vinyl ketone.svg

The efficiency of this organogold reaction is noteworthy because both the furan and the ketone are sensitive to side reactions such as polymerisation under acidic conditions. In some cases where alkynes are present, phenols sometimes form (Ts is an abbreviation for tosyl): [29]

AuCl3 phenol synthesis.svg

This reaction involves a rearrangement that gives a new aromatic ring. [30]

Another example of an AuCl3 catalyzed reaction is a hydroarylation, which is basically a Friedel-Crafts reaction using metal-alkyne complexes. Example, the reaction of mesitylene with phenylacetylene: [31]

Hydroarylation reetz.png

Gold(III) chloride can be used for the direct oxidation of primary amines into ketones, such as the oxidation of cyclohexylamine to cyclohexanone. [5]

Example of oxidation by AuCl3.png

This reaction is pH sensitive, requiring a mildly acidic pH to proceed, however, it does not require any additional steps. [5]

In the production of organogold(III) compounds, AuCl3 is used as a source of gold. A main example of this is the production of monoarylgold(III) complexes, which are produced by direct electrophilic auration of arenes by gold(III) chloride. [32]

Gold nanoparticles

Gold(III) chloride is used in the synthesis of gold nanoparticles, which are extensively studied for their unique size-dependent properties and applications in fields such as electronics, optics, and biomedicine. Gold nanoparticles can be prepared by reducing gold(III) chloride with a reducing agent such as sodium tetrafluoroborate, followed by stabilization with a capping agent. [33]

Photography

Gold(III) chloride has been used historically in the photography industry as a sensitizer in the production of photographic films and papers. However, with the advent of digital photography, its use in this field has diminished. [34]

Natural occurrence

This compound does not naturally occur in nature, however, a similar compound with the formula AuO(OH,Cl)·nH2O is known as a product of natural gold oxidation. [35] [36]

Related Research Articles

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2. It forms hydrates. Zinc chloride, anhydrous and its hydrates are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

<span class="mw-page-title-main">Cerium(III) chloride</span> Chemical compound

Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Chromium(III) chloride</span> Chemical compound

Chromium(III) chloride (also called chromic chloride) is an inorganic chemical compound with the chemical formula CrCl3. It forms several hydrates with the formula CrCl3·nH2O, among which are hydrates where n can be 5 (chromium(III) chloride pentahydrate CrCl3·5H2O) or 6 (chromium(III) chloride hexahydrate CrCl3·6H2O). The anhydrous compound with the formula CrCl3 are violet crystals, while the most common form of the chromium(III) chloride are the dark green crystals of hexahydrate, CrCl3·6H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

<span class="mw-page-title-main">Iron(II) chloride</span> Chemical compound

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Erbium(III) chloride</span> Chemical compound

Erbium(III) chloride is a violet solid with the formula ErCl3. It is used in the preparation of erbium metal.

<span class="mw-page-title-main">Trimethylsilyl chloride</span> Organosilicon compound with the formula (CH3)3SiCl

Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound, with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.

<span class="mw-page-title-main">Zirconium(IV) chloride</span> Chemical compound

Zirconium(IV) chloride, also known as zirconium tetrachloride, is an inorganic compound frequently used as a precursor to other compounds of zirconium. This white high-melting solid hydrolyzes rapidly in humid air.

<span class="mw-page-title-main">Vanadium(III) chloride</span> Chemical compound

Vanadium(III) chloride describes the inorganic compound with the formula VCl3 and its hydrates. It forms a purple anhydrous form and a green hexahydrate [VCl2(H2O)4]Cl·2H2O. These hygroscopic salts are common precursors to other vanadium(III) complexes and is used as a mild reducing agent.

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

<span class="mw-page-title-main">Indium(III) chloride</span> Chemical compound

Indium(III) chloride is the chemical compound with the formula InCl3 which forms a tetrahydrate. This salt is a white, flaky solid with applications in organic synthesis as a Lewis acid. It is also the most available soluble derivative of indium. This is one of three known indium chlorides.

<span class="mw-page-title-main">Chloro(triphenylphosphine)gold(I)</span> Chemical compound

Chloro(triphenylphosphine)gold(I) or triphenylphosphinegold(I) chloride is a coordination complex with the formula (Ph3P)AuCl. This colorless solid is a common reagent for research on gold compounds.

<span class="mw-page-title-main">Chloroauric acid</span> Chemical compound

Chloroauric acid is an inorganic compound with the chemical formula H[AuCl4]. It forms hydrates H[AuCl4nH2O. Both the trihydrate and tetrahydrate are known. Both are orange-yellow solids consisting of the planar [AuCl4] anion. Often chloroauric acid is handled as a solution, such as those obtained by dissolution of gold in aqua regia. These solutions can be converted to other gold complexes or reduced to metallic gold or gold nanoparticles.

Organogold chemistry is the study of compounds containing gold–carbon bonds. They are studied in academic research, but have not received widespread use otherwise. The dominant oxidation states for organogold compounds are I with coordination number 2 and a linear molecular geometry and III with CN = 4 and a square planar molecular geometry.

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

Chloryl tetraperchloratoaurate is an inorganic chemical compound with the formula ClO2Au(ClO4)4 consisting of the chloryl cation and a tetraperchloratoaurate anion. It is an orange solid that readily hydrolyzes in air.

References

  1. 1 2 3 4 5 Egon Wiberg; Nils Wiberg; A. F. Holleman (2001). Inorganic Chemistry (101 ed.). Academic Press. pp. 1286–1287. ISBN   978-0-12-352651-9.
  2. 1 2 3 E. S. Clark; D. H. Templeton; C. H. MacGillavry (1958). "The crystal structure of gold(III) chloride". Acta Crystallogr. 11 (4): 284–288. doi: 10.1107/S0365110X58000694 . Retrieved 2010-05-21.
  3. Haynes, William M.; Lide, David R.; Bruno, Thomas J., eds. (2016). CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data (95th ed.). Boca Raton, Florida. p. 5-5. ISBN   978-1-4987-5428-6. OCLC   930681942.{{cite book}}: CS1 maint: location missing publisher (link)
  4. "Gold Chloride". American Elements . Retrieved July 22, 2019.
  5. 1 2 3 4 5 6 Michael J. Coghlan; Rene-Viet Nguyen; Chao-Jun Li; Daniel Pflästerer; A. Stephen K. Hashmi (2015). "Gold(III) Chloride". Encyclopedia of Reagents for Organic Synthesis: 1–24. doi:10.1002/047084289X.rn00325.pub3. ISBN   9780470842898.
  6. Robert Boyle (1666). The origine of formes and qualities. p. 370.
  7. Thomas Kirke Rose (1895). "The dissociation of chloride of gold". Journal of the Chemical Society, Transactions. 67: 881–904. doi:10.1039/CT8956700881.
  8. Buckley, Robbie W.; Healy, Peter C.; Loughlin, Wendy A. (1997). "Reduction of [NBu4][AuCl4] to [NBu4][AuCl2] with Sodium Acetylacetonate". Australian Journal of Chemistry . 50 (7): 775. doi:10.1071/C97029.
  9. Block, B. P. (1953). "Gold Powder and Potassium Tetrabromoaurate(III)". Inorganic Syntheses. Inorganic Syntheses. Vol. 4. pp. 14–17. doi:10.1002/9780470132357.ch4. ISBN   9780470132357.
  10. 1 2 Ya-jie Zheng; Wei Guo; Meng Bai; Xing-wen Yang (2006). "Preparation of chloroauric acid and its thermal decomposition". The Chinese Journal of Nonferrous Metals (in Chinese). 16 (11): 1976–1982.
  11. 1 2 Robert G. Palgrave; Ivan P. Parkin (2007). "Aerosol Assisted Chemical Vapor Deposition of Gold and Nanocomposite Thin Films from Hydrogen Tetrachloroaurate(III)". Chemistry of Materials. ACS Publications. 19 (19): 4639–4647. doi:10.1021/cm0629006.
  12. Yiqin Chen; Xuezeng Tian; Wei Zeng; Xupeng Zhu; Hailong Hu; Huigao Duan (2015). "Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis". Journal of Colloid and Interface Science. Elsevier. 439: 21–27. Bibcode:2015JCIS..439...21C. doi:10.1016/j.jcis.2014.10.017. PMID   25463171.
  13. E.M.W. Janssen; J.C.W. Folmer; G.A. Wiegers (1974). "The preparation and crystal structure of gold monochloride, AuCl". Journal of the Less Common Metals. 38 (1): 71–76. doi:10.1016/0022-5088(74)90204-5.
  14. Hermann Renner; Günther Schlamp (2000). "Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. pp. 106–107. doi:10.1002/14356007.a12_499. ISBN   978-3-527-30673-2.
  15. 1 2 3 4 N. N. Greenwood; A. Earnshaw (1997). Chemistry of the Elements (2 ed.). Oxford, UK: Butterworth-Heinemann. pp. 1184–1185. ISBN   9780750633659.
  16. Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Advanced Inorganic Chemistry; John Wiley & Sons: New York, 1999; pp. 1101-1102
  17. The Merck Index. An Encyclopaedia of Chemicals, Drugs and Biologicals. 14. Ed., 2006, p. 780, ISBN   978-0-911910-00-1.
  18. H. Nechamkin, The Chemistry of the Elements, McGraw-Hill, New York, 1968, p. 222
  19. A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, Oxford, UK, 1984, p. 909
  20. Henry K. Lutz (1961). "Synthesis and Analyses of KAu(CN)4". Honors Theses. Union Digital Works.
  21. Li, Zigang; Brouwer, Chad; He, Chuan (2008-08-01). "Gold-Catalyzed Organic Transformations". Chemical Reviews . 108 (8): 3239–3265. doi:10.1021/cr068434l. ISSN   0009-2665. PMID   18613729.
  22. Daniela Belli Dell'Amico; Fausto Calderazzo; Fabio Marchetti; Stefano Merlino; Giovanni Perego (1977). "X-Ray crystal and molecular structure of Au4Cl8, the product of the reduction of Au2Cl6 by Au(CO)Cl". Journal of the Chemical Society, Chemical Communications: 31–32. doi:10.1039/C39770000031.
  23. Daniela Belli Dell'Amico; Fausto Calderazzo; Fabio Marchetti; Stefano Merlino (1982). "Synthesis and molecular structure of [Au4Cl8], and the isolation of [Pt(CO)Cl5]– in thionyl chloride". Journal of the Chemical Society, Dalton Transactions (11): 2257–2260. doi:10.1039/DT9820002257.
  24. Dell'Amico, D. Belli; Calderazzo, F.; Murray, H. H.; Fackler, J. P. (1986). "Carbonylchlorogold(I)". Inorganic Syntheses. Vol. 24. pp. 236–238. doi:10.1002/9780470132555.ch66. ISBN   9780470132555.
  25. 1 2 T.A. Ryan; E.A. Seddon; K.R. Seddon; C. Ryan (1996). Phosgene And Related Carbonyl Halides. Elsevier Science. pp. 242–243. ISBN   9780080538808.
  26. M. S. Kharasch; H. S. Isbell (1930). "The Chemistry of Organic Gold Compounds. I. Aurous Chloride Carbonyl and a Method of Linking Carbon to Carbon". Journal of the American Chemical Society. 52 (7): 2919–2927. doi:10.1021/ja01370a052.
  27. G. Dyker, An Eldorado for Homogeneous Catalysis?, in Organic Synthesis Highlights V, H.-G. Schmaltz, T. Wirth (eds.), pp 48–55, Wiley-VCH, Weinheim, 2003
  28. Y. Fukuda; K. Utimoto (1991). "Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst". J. Org. Chem. 56 (11): 3729. doi:10.1021/jo00011a058.
  29. 1 2 A. S. K. Hashmi; T. M. Frost; J. W. Bats (2000). "Highly Selective Gold-Catalyzed Arene Synthesis". J. Am. Chem. Soc. 122 (46): 11553. doi:10.1021/ja005570d.
  30. A. Stephen; K. Hashmi; M. Rudolph; J. P. Weyrauch; M. Wölfle; W. Frey; J. W. Bats (2005). "Gold Catalysis: Proof of Arene Oxides as Intermediates in the Phenol Synthesis". Angewandte Chemie International Edition . 44 (18): 2798–801. doi:10.1002/anie.200462672. PMID   15806608.
  31. Reetz, M. T.; Sommer, K. (2003). "Gold-Catalyzed Hydroarylation of Alkynes". European Journal of Organic Chemistry. 2003 (18): 3485–3496. doi:10.1002/ejoc.200300260.
  32. Kharasch, M. S.; Isbell, Horace S. (1931-08-01). "The Chemistry of Organic Gold Compounds. III. Direct Introduction of Gold into the Aromatic Nucleus (Preliminary Communication)". Journal of the American Chemical Society. 53 (8): 3053–3059. doi:10.1021/ja01359a030. ISSN   0002-7863.
  33. M. Lin; C. M. Sorensen; K. J. Klabunde (1999). "Ligand-Induced Gold Nanocrystal Superlattice Formation in Colloidal Solution". Chemistry of Materials. 11 (2): 198–202. doi:10.1021/cm980665o.
  34. Philip Ellis (1975). "Gold in photography". Gold Bulletin. 8: 7–12. doi: 10.1007/BF03215055 . S2CID   136538890.
  35. "UM1995-16-O:AuClH". mindat.org. Retrieved 27 April 2023.
  36. John L. Jambor; Nikolai N. Pertsev; Andrew C. Roberts (1996). "New Mineral Names" (PDF). American Mineralogist. 81: 768.