Respirometer

Last updated
Respirometer
Purposemeasure the rate of respiration

A respirometer is a device used to measure the rate of respiration [1] of a living organism by measuring its rate of exchange of oxygen and/or carbon dioxide. [2] They allow investigation into how factors such as age, or chemicals affect the rate of respiration. [3] Respirometers are designed to measure respiration either on the level of a whole animal or plant or on the cellular level. These fields are covered by whole animal and cellular (or mitochondrial) respirometry, respectively. [4]

A simple whole plant respirometer designed to measure oxygen uptake or CO2 release consists of a sealed container with the living specimen together with a substance to absorb the carbon dioxide given off during respiration, such as soda lime pellets or cotton wads soaked with potassium hydroxide. The oxygen uptake is detected by manometry. [5] Typically, a U-tube manometer is used, which directly shows the pressure difference between the container and the atmosphere. As an organism takes up O2, it generates a proportionate quantity of CO2 (see respiratory quotient), but all the CO2 is absorbed by the soda lime. Therefore, all of the drop of pressure in the chamber can be attributed to the drop of O2 partial pressure in the container. The rate of change gives a direct and reasonably accurate reading for the organism's rate of respiration.

As changes in temperature or pressure can also affect the displacement of the manometric fluid, a second respirometer identical to the first except with a dead specimen (or something with the same mass as the specimen in place of the organism) is sometimes set up. Subtracting the displacement of the second respirometer from the first allows for control of these factors.

The set up of modern respirometers is described in more detail under respirometry. A respirometer may also be called an oxygraph. [6] Suppliers for whole animal respirometers are e.g. Sable Systems, Respirometer Systems and Applications, Qubit Systems, Eco-environment Technology, or Challenge Technology; for mitochondrial respirometers, Oroboros Instruments, [7] Hansatech Instruments, [8] or YSI. [9]

See also

Related Research Articles

Respiratory system Biological system in animals and plants for gas exchange

The respiratory system is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs called alveoli in mammals and reptiles, but atria in birds. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration.

Cellular respiration Metabolic reactions in the cells of organisms converting chemical energy from oxygen molecules or nutrients into adenosine triphosphate (ATP) while releasing waste byproducts.

Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules or nutrients into adenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen, are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.

Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the transport of carbon dioxide in the opposite direction.

Oxygen saturation Relative measure of the amount of oxygen that is dissolved or carried in a given medium

Oxygen saturation is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium. It can be measured with a dissolved oxygen probe such as an oxygen sensor or an optode in liquid media, usually water. The standard unit of oxygen saturation is percent (%).

The (light) compensation point is the light intensity on the light curve where the rate of photosynthesis exactly matches the rate of cellular respiration. At this point, the uptake of CO2 through photosynthetic pathways is equal to the respiratory release of carbon dioxide, and the uptake of O2 by respiration is equal to the photosynthetic release of oxygen..

The respiratory quotient, is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body. Such measurements, like measurements of oxygen uptake, are forms of indirect calorimetry. It is measured using a respirometer. The Respiratory Quotient value indicates which macronutrients are being metabolized, as different energy pathways are used for fats, carbohydrates, and proteins. If metabolism consists solely of lipids, the Respiratory Quotient is 0.7, for proteins it is 0.8, and for carbohydrates it is 1.0. Most of the time, however, energy consumption is composed of both fats and carbohydrates. The approximate respiratory quotient of a mixed diet is 0.8. Some of the other factors that may affect the respiratory quotient are energy balance, circulating insulin, and insulin sensitivity.

Doubly labeled water is water in which both the hydrogen and the oxygen have been partly or completely replaced with an uncommon isotope of these elements for tracing purposes.

Respirometry is a general term that encompasses a number of techniques for obtaining estimates of the rates of metabolism of vertebrates, invertebrates, plants, tissues, cells, or microorganisms via an indirect measure of heat production (calorimetry).

The factors that determine the values for alveolar pO2 and pCO2 are:

Common octopus Species of cephalopod

The common octopus is a mollusc belonging to the class Cephalopoda. Octopus vulgaris is the most studied of all octopus species. It is considered cosmopolitan, that is, a global species, which ranges from the eastern Atlantic, extends from the Mediterranean Sea and the southern coast of England, to at least Senegal in Africa. It also occurs off the Azores, Canary Islands, and Cape Verde Islands. The species is also common in the Western Atlantic. The common octopus hunts at dusk. Crabs, crayfish, and bivalve molluscs are preferred, although the octopus eats almost anything it can catch. It is able to change colour to blend in with its surroundings, and is able to jump upon any unwary prey that strays across its path. Using its beak, it is able to break into the shells of shelled molluscs. Training experiments have shown the common octopus can distinguish the brightness, size, shape, and horizontal or vertical orientation of objects.

Discontinuous gas-exchange cycles (DGC), also called discontinuous ventilation or discontinuous ventilatory cycles, follow one of several patterns of arthropod gas exchange that have been documented primarily in insects; they occur when the insect is at rest. During DGC, oxygen (O2) uptake and carbon dioxide (CO2) release from the whole insect follow a cyclical pattern characterized by periods of little to no release of CO2 to the external environment. Discontinuous gas exchange is traditionally defined in three phases, whose names reflect the behaviour of the spiracles: the closed phase, the flutter phase, and the open phase.

Ocean deoxygenation is the reduction of the oxygen content of the oceans due to human activities as a consequence of anthropogenic emissions of carbon dioxide and eutrophication driven excess production. It is manifest in the increasing number of coastal and estuarine hypoxic areas, or dead zones, and the expansion of oxygen minimum zones in the world's oceans. The decrease in oxygen content of the oceans has been fairly rapid and poses a threat to all aerobic marine life, as well as to people who depend on marine life for nutrition or livelihood.

Breathing Process of moving air into and out of the lungs

Breathing is the process of moving air into and out of the lungs to facilitate gas exchange with the internal environment, mostly by bringing in oxygen and flushing out carbon dioxide.

Cutaneous respiration, or cutaneous gas exchange, is a form of respiration in which gas exchange occurs across the skin or outer integument of an organism rather than gills or lungs. Cutaneous respiration may be the sole method of gas exchange, or may accompany other forms, such as ventilation. Cutaneous respiration occurs in a wide variety of organisms, including insects, amphibians, fish, sea snakes, turtles, and to a lesser extent in mammals Cutaneous respiration occur in also earthworm

Indirect calorimetry

Indirect calorimetry calculates heat that living organisms produce by measuring either their production of carbon dioxide and nitrogen waste, or from their consumption of oxygen. Indirect calorimetry is the method by which the type and rate of substrate utilization, and energy metabolism are estimated in vivo starting from gas exchange measurements. This technique provides unique information, is noninvasive, and can be advantageously combined with other experimental methods to investigate numerous aspects of nutrient assimilation, thermogenesis, the energetics of physical exercise, and the pathogenesis of metabolic diseases.

Work of breathing (WOB) is the energy expended to inhale and exhale a breathing gas. It is usually expressed as work per unit volume, for example, joules/litre, or as a work rate (power), such as joules/min or equivalent units, as it is not particularly useful without a reference to volume or time. It can be calculated in terms of the pulmonary pressure multiplied by the change in pulmonary volume, or in terms of the oxygen consumption attributable to breathing. In a normal resting state the work of breathing constitutes about 5% of the total body oxygen consumption. It can increase considerably due to illness or constraints on gas flow imposed by breathing apparatus, ambient pressure, or breathing gas composition.

Aerobic fermentation or aerobic glycolysis is a metabolic process by which cells metabolize sugars via fermentation in the presence of oxygen and occurs through the repression of normal respiratory metabolism. It is referred to as the crabtree effect in yeast. and is part of the Warburg effect in tumor cells. While aerobic fermentation does not produce adenosine triphosphate (ATP) in high yield, it allows proliferating cells to convert nutrients such as glucose and glutamine more efficiently into biomass by avoiding unnecessary catabolic oxidation of such nutrients into carbon dioxide, preserving carbon-carbon bonds and promoting anabolism.

Respiratory adaptation is the specific changes that the respiratory system undergoes in response to the demands of physical exertion. Intense physical exertion, such as that involved in fitness training, places elevated demands on the respiratory system. Over time, this results in respiratory changes as the system adapts to these requirements. These changes ultimately result in an increased exchange of oxygen and carbon dioxide, which is accompanied by an increase in metabolism. Respiratory adaptation is a physiological determinant of peak endurance performance, and in elite athletes, the pulmonary system is often a limiting factor to exercise under certain conditions.

Lake metabolism The balance between production and consumption of organic matter in lakes

Lake metabolism represents a lake's balance between carbon fixation and biological carbon oxidation. Whole-lake metabolism includes the carbon fixation and oxidation from all organism within the lake, from bacteria to fishes, and is typically estimated by measuring changes in dissolved oxygen or carbon dioxide throughout the day.

References

  1. Toole, Glenn; Toole, Sue (2004). Essential A2 Biology for OCR. Nelson Thornes. p. 18. ISBN   9780748785186 . Retrieved 23 August 2018.
  2. "Pearson - The Biology Place". www.phschool.com. Retrieved 2019-10-29.
  3. "Measuring the rate of metabolism | Nuffield Foundation". www.nuffieldfoundation.org. Retrieved 2019-10-29.
  4. Beeson, Craig C.; Beeson, Gyda C.; Schnellmann, Rick G. (2010-09-01). "A high-throughput respirometric assay for mitochondrial biogenesis and toxicity". Analytical Biochemistry. 404 (1): 75–81. doi:10.1016/j.ab.2010.04.040. ISSN   1096-0309. PMC   2900494 . PMID   20465991.
  5. "Measuring respiratory quotient | Nuffield Foundation". www.nuffieldfoundation.org. Retrieved 2019-10-29.
  6. Djafarzadeh, Siamak; Jakob, Stephan M. (2017-02-08). "High-resolution Respirometry to Assess Mitochondrial Function in Permeabilized and Intact Cells". Journal of Visualized Experiments (120): e54985. doi:10.3791/54985. ISSN   1940-087X. PMC   5408571 . PMID   28287504.
  7. "Oroboros: HRR". www.oroboros.at. Retrieved 2019-10-29.
  8. "Chlorolab 3+ System". Hansatech Instruments Ltd. Retrieved 2019-10-29.
  9. Aug 29, Will Miller |; 2017. "Biosensor Technology | YSI Life Sciences". www.ysi.com. Retrieved 2019-10-29.CS1 maint: numeric names: authors list (link)