Trichostatin A

Last updated
Trichostatin A
Trichostatin A.svg
Trichostatin A 3D spacefill.png
Clinical data
Pregnancy
category
  • Teratogenic
ATC code
  • None
Identifiers
  • (2E,4E,6R)-7-[4-(Dimethylamino)phenyl]-N-hydroxy-4,6-dimethyl-7-oxo-2,4-heptadienamide
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.107.856 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C17H22N2O3
Molar mass 302.374 g·mol−1
3D model (JSmol)
  • O=C(NO)\C=C\C(=C\[C@H](C(=O)c1ccc(N(C)C)cc1)C)C
  • InChI=1S/C17H22N2O3/c1-12(5-10-16(20)18-22)11-13(2)17(21)14-6-8-15(9-7-14)19(3)4/h5-11,13,22H,1-4H3,(H,18,20)/b10-5+,12-11+/t13-/m1/s1 Yes check.svgY
  • Key:RTKIYFITIVXBLE-QEQCGCAPSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Trichostatin A (TSA) is an organic compound that serves as an antifungal antibiotic and selectively inhibits the class I and II mammalian histone deacetylase (HDAC) families of enzymes, but not class III HDACs (i.e., sirtuins). [1] However, there are recent reports of the interactions of this molecule with Sirt 6 protein. [2] TSA inhibits the eukaryotic cell cycle during the beginning of the growth stage. TSA can be used to alter gene expression by interfering with the removal of acetyl groups from histones (histone deacetylases, HDAC) and therefore altering the ability of DNA transcription factors to access the DNA molecules inside chromatin. It is a member of a larger class of histone deacetylase inhibitors (HDIs or HDACIs) that have a broad spectrum of epigenetic activities. Thus, TSA has some potential as an anti-cancer drug. [3] One suggested mechanism is that TSA promotes the expression of apoptosis-related genes, leading to cancerous cells surviving at lower rates, thus slowing the progression of cancer. [4] Other mechanisms may include the activity of HDIs to induce cell differentiation, thus acting to "mature" some of the de-differentiated cells found in tumors. HDIs have multiple effects on non-histone effector molecules, so the anti-cancer mechanisms are truly not understood at this time. [5] [6]

Contents

TSA inhibits HDACs 1, 3, 4, 6 and 10 with IC50 values around 20 nM. [7]

TSA represses IL (interleukin)-1β/LPS (lipopolysaccharide)/IFNγ (interferon γ)-induced nitric oxide synthase 2 (NOS2) expression in murine macrophage-like cells but increases LPS-stimulated NOS2 expression in murine N9 and primary rat microglial cells. [8]

Vorinostat is structurally related to trichostatin A and used to treat cutaneous T cell lymphoma. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Histone deacetylase</span> Class of enzymes important in regulating DNA transcription

Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. In general, they suppress gene expression.

A tetrapeptide is a peptide, classified as an oligopeptide, since it only consists of four amino acids joined by peptide bonds. Many tetrapeptides are pharmacologically active, often showing affinity and specificity for a variety of receptors in protein-protein signaling. Present in nature are both linear and cyclic tetrapeptides (CTPs), the latter of which mimics protein reverse turns which are often present on the surface of proteins and druggable targets. Tetrapeptides may be cyclized by a fourth peptide bond or other covalent bonds.

Vorinostat (rINN), also known as suberoylanilide hydroxamic acid, is a member of a larger class of compounds that inhibit histone deacetylases (HDAC). Histone deacetylase inhibitors (HDI) have a broad spectrum of epigenetic activities.

<span class="mw-page-title-main">Histone acetylation and deacetylation</span> Biological processes used in gene regulation

Histone acetylation and deacetylation are the processes by which the lysine residues within the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation.

Histone deacetylase inhibitors are chemical compounds that inhibit histone deacetylases. Since deacetylation of histones produces transcriptionally silenced heterochromatin, HDIs can render chromatin more transcriptionally active and induce epigenomic changes.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">FOSB</span> Protein

Protein fosB, also known as FosB and G0/G1 switch regulatory protein 3 (G0S3), is a protein that in humans is encoded by the FBJ murine osteosarcoma viral oncogene homolog B (FOSB) gene.

<span class="mw-page-title-main">Romidepsin</span> Chemical compound

Romidepsin, sold under the brand name Istodax, is an anticancer agent used in cutaneous T-cell lymphoma (CTCL) and other peripheral T-cell lymphomas (PTCLs). Romidepsin is a natural product obtained from the bacterium Chromobacterium violaceum, and works by blocking enzymes known as histone deacetylases, thus inducing apoptosis. It is sometimes referred to as depsipeptide, after the class of molecules to which it belongs. Romidepsin is branded and owned by Gloucester Pharmaceuticals, a part of Celgene.

While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.

Cocaine addiction is the compulsive use of cocaine despite adverse consequences. It arises through epigenetic modification and transcriptional regulation of genes in the nucleus accumbens.

Embryonic stem cells are capable of self-renewing and differentiating to the desired fate depending on their position in the body. Stem cell homeostasis is maintained through epigenetic mechanisms that are highly dynamic in regulating the chromatin structure as well as specific gene transcription programs. Epigenetics has been used to refer to changes in gene expression, which are heritable through modifications not affecting the DNA sequence.

Paul Alan Marks was a medical doctor, researcher and administrator. He was a faculty member and president at Memorial Sloan Kettering Cancer Center.

Epigenetic regulation of neurogenesis is the role that epigenetics plays in the regulation of neurogenesis.

Epigenetic therapy refers to the use of drugs or other interventions to modify gene expression patterns, potentially treating diseases by targeting epigenetic mechanisms such as DNA methylation and histone modifications.

<span class="mw-page-title-main">Pracinostat</span> Chemical compound

Pracinostat (SB939) is an orally bioavailable, small-molecule histone deacetylase (HDAC) inhibitor based on hydroxamic acid with potential anti-tumor activity characterized by favorable physicochemical, pharmaceutical, and pharmacokinetic properties.

<span class="mw-page-title-main">Epigenetics of neurodegenerative diseases</span> Field of study

Neurodegenerative diseases are a heterogeneous group of complex disorders linked by the degeneration of neurons in either the peripheral nervous system or the central nervous system. Their underlying causes are extremely variable and complicated by various genetic and/or environmental factors. These diseases cause progressive deterioration of the neuron resulting in decreased signal transduction and in some cases even neuronal death. Peripheral nervous system diseases may be further categorized by the type of nerve cell affected by the disorder. Effective treatment of these diseases is often prevented by lack of understanding of the underlying molecular and genetic pathology. Epigenetic therapy is being investigated as a method of correcting the expression levels of misregulated genes in neurodegenerative diseases.

Epigenetics of depression is the study of how epigenetics contribute to depression.

Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.

Epigenetics of chronic pain is the study of how epigenetic modifications of genes affect the development and maintenance of chronic pain. Chromatin modifications have been found to affect neural function, such as synaptic plasticity and memory formation, which are important mechanisms of chronic pain. In 2019, 20% of adults dealt with chronic pain. Epigenetics can provide a new perspective on the biological mechanisms and potential treatments of chronic pain.

References

  1. Vanhaecke T, Papeleu P, Elaut G, Rogiers V (June 2004). "Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view". Current Medicinal Chemistry. 11 (12): 1629–1643. doi:10.2174/0929867043365099. PMID   15180568.
  2. You W, Steegborn C (December 2018). "Structural Basis of Sirtuin 6 Inhibition by the Hydroxamate Trichostatin A: Implications for Protein Deacylase Drug Development". Journal of Medicinal Chemistry. 61 (23): 10922–10928. doi:10.1021/acs.jmedchem.8b01455. PMID   30395713.
  3. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005). "Clinical development of histone deacetylase inhibitors as anticancer agents". Annual Review of Pharmacology and Toxicology. 45: 495–528. doi:10.1146/annurev.pharmtox.45.120403.095825. PMID   15822187.
  4. Shankar S, Srivastava RK (2008). "Histone Deacetylase Inhibitors: Mechanisms and Clinical Significance in Cancer: HDAC Inhibitor-Induced Apoptosis". Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology. Vol. 615. pp. 261–98. doi:10.1007/978-1-4020-6554-5_13. ISBN   978-1-4020-6553-8. PMID   18437899.
  5. Joanna F, van Grunsven LA, Mathieu V, Sarah S, Sarah D, Karin V, et al. (September 2009). "Histone deacetylase inhibition and the regulation of cell growth with particular reference to liver pathobiology". Journal of Cellular and Molecular Medicine. 13 (9B): 2990–3005. doi:10.1111/j.1582-4934.2009.00831.x. PMC   4516460 . PMID   19583816.
  6. Movafagh S, Munson A (January 2019). "Chapter 4 - Histone Deacetylase Inhibitors in Cancer Prevention and Therapy". In Bishayee A, Bhatia D (eds.). Epigenetics of Cancer Prevention. Translational Epigenetics. Vol. 8. Academic Press. pp. 75–105. doi:10.1016/b978-0-12-812494-9.00004-4. ISBN   978-0-12-812494-9.
  7. US 8232297,Maier T, Beckers T, Hummel RP, Feth M, Muller M, Bar T, Volz J,"Novel Sulphonylpyrroles as Inhibitors of Hdac S Novel Sulphonylpyrroles",issued 31 July 2012, assigned to 4SC AG
  8. Adcock IM (April 2007). "HDAC inhibitors as anti-inflammatory agents". British Journal of Pharmacology. 150 (7): 829–831. doi:10.1038/sj.bjp.0707166. PMC   2013887 . PMID   17325655.
  9. Bubna AK (2015). "Vorinostat-An Overview". Indian Journal of Dermatology. 60 (4): 419. doi: 10.4103/0019-5154.160511 . PMC   4533557 . PMID   26288427.

Further reading