Typical antipsychotic

Last updated
Typical antipsychotic
Drug class
Chlorpromazine.svg
Skeletal formula of chlorpromazine, the first neuroleptic drug
Synonyms First generation antipsychotics, conventional antipsychotics, classical neuroleptics, traditional antipsychotics, major tranquilizers
Legal status
In Wikidata
Bottle containing capsules of loxapine, a mid-potency typical antipsychotic Loxapine.jpg
Bottle containing capsules of loxapine, a mid-potency typical antipsychotic

Typical antipsychotics (also known as major tranquilizers , and first generation antipsychotics) are a class of antipsychotic drugs first developed in the 1950s and used to treat psychosis (in particular, schizophrenia). Typical antipsychotics may also be used for the treatment of acute mania, agitation, and other conditions. The first typical antipsychotics to come into medical use were the phenothiazines, namely chlorpromazine which was discovered serendipitously. [1] Another prominent grouping of antipsychotics are the butyrophenones, an example of which is haloperidol. The newer, second-generation antipsychotics, also known as atypical antipsychotics, have largely supplanted the use of typical antipsychotics as first-line agents due to the higher risk of movement disorders in the latter.

Contents

Both generations of medication tend to block receptors in the brain's dopamine pathways, but atypicals at the time of marketing were claimed to differ from typical antipsychotics in that they are less likely to cause extrapyramidal symptoms (EPS), which include unsteady Parkinson's disease-type movements, internal restlessness, and other involuntary movements (e.g. tardive dyskinesia, which can persist after stopping the medication). [2] More recent research has demonstrated the side effect profile of these drugs is similar to older drugs, causing the leading medical journal The Lancet to write in its editorial "the time has come to abandon the terms first-generation and second-generation antipsychotics, as they do not merit this distinction." [3] While typical antipsychotics are more likely to cause EPS, atypicals are more likely to cause adverse metabolic effects, such as weight gain and increase the risk for type II diabetes. [4]

Clinical uses

Typical antipsychotics block the dopamine 2 receptor (D2) receptor, causing a tranquilizing effect. [5] It is thought that 60–80% of D2 receptors need to be occupied for antipsychotic effect. [5] For reference, the typical antipsychotic haloperidol tends to block about 80% of D2 receptors at doses ranging from 2 to 5 mg per day. [5] On the aggregate level, no typical antipsychotic is more effective than any other, though people will vary in which antipsychotic they prefer to take based on individual differences in tolerability and effectiveness. [5] Typical antipsychotics can be used to treat, e.g., schizophrenia or severe agitation. [5] Haloperidol, due to the availability of a rapid-acting injectable formulation and decades of use, remains the most commonly used antipsychotic for treating severe agitation in the emergency department setting. [5]

Adverse effects

Adverse effects vary among the various agents in this class of medications, but common effects include: dry mouth, muscle stiffness, muscle cramping, tremors, EPS and weight gain. EPS refers to a cluster of symptoms consisting of akathisia, parkinsonism, and dystonia. Anticholinergics such as benztropine and diphenhydramine are commonly prescribed to treat the EPS. 4% of users develop rabbit syndrome while on typical antipsychotics. [6]

There is a risk of developing a serious condition called tardive dyskinesia as a side effect of antipsychotics, including typical antipsychotics. The risk of developing tardive dyskinesia after chronic typical antipsychotic usage varies on several factors, such as age and gender, as well as the specific antipsychotic used. The commonly reported incidence of TD among younger patients is about 5% per year. Among older patients incidence rates as high as 20% per year have been reported. The average prevalence is approximately 30%. [7] There are few treatments that have consistently been shown to be effective for the treatment of tardive dyskinesia, though an VMAT2 inhibitor like valbenazine may help. [8] The atypical antipsychotic clozapine has also been suggested as an alternative antipsychotic for patients experiencing tardive dyskinesia. [9] Tardive dyskinesia may reverse upon discontinuation of the offending agent or it may be irreversible, withdrawal may also make tardive dyskinesia more severe. [10]

Neuroleptic malignant syndrome (NMS) is a rare, but potentially fatal side effect of antipsychotic treatment. NMS is characterized by fever, muscle rigidity, autonomic dysfunction, and altered mental status. Treatment includes discontinuation of the offending agent and supportive care.

The role of typical antipsychotics has come into question recently as studies have suggested that typical antipsychotics may increase the risk of death in elderly patients. A 2005 retrospective cohort study from the New England Journal of Medicine showed an increase in risk of death with the use of typical antipsychotics that was on par with the increase shown with atypical antipsychotics. [11] This has led some to question the common use of antipsychotics for the treatment of agitation in the elderly, particularly with the availability of alternatives such as mood stabilizing and antiepileptic drugs.

Potency

Traditional antipsychotics are classified as high-potency, mid-potency, or low-potency based on their potency for the D2 receptor:

PotencyExamples Adverse effect profile
high fluphenazine and haloperidol more extrapyramidal side effects (EPS) and less antihistaminic effects (e.g. sedation), alpha adrenergic antagonism (e.g. orthostatic hypotension), and anticholinergic effects (e.g. dry mouth)
middle perphenazine and loxapine intermediate D2 affinity, with more off-target effects than high-potency agents
low chlorpromazine less risk of EPS but more antihistaminic effects, alpha adrenergic antagonism, and anticholinergic effects

Prochlorperazine (Compazine, Buccastem, Stemetil) and Pimozide (Orap) are less commonly used to treat psychotic states, and so are sometimes excluded from this classification. [12]

A related concept to D2 potency is the concept of "chlorpromazine equivalence", which provides a measure of the relative effectiveness of antipsychotics. [13] [14] The measure specifies the amount (mass) in milligrams of a given drug that must be administered in order to achieve desired effects equivalent to those of 100 milligrams of chlorpromazine. [15] Another method is "defined daily dose" (DDD), which is the assumed average dose of an antipsychotic that an adult would receive during long-term treatment. [15] DDD is primarily used for comparing the utilization of antipsychotics (e.g. in an insurance claim database), rather than comparing therapeutic effects between antipsychotics. [15] Maximum dose methods are sometimes used to compare between antipsychotics as well. [15] It is important to note that these methods do not generally account for differences between the tolerability (i.e. the risk of side effects) or the safety between medications. [15]

For a list of typical antipsychotics organized by potency, see below:

Low potency

Medium potency

High potency

Where: † indicates products that have since been discontinued. [16]

Long-acting injectables

Some typical antipsychotics have been formulated as a long-acting injectable (LAI), or "depot", formulation. Depot injections are also used on persons under involuntary commitment to force compliance with a court treatment order when the person would refuse to take daily oral medication. This has the effect of dosing a person who doesn't consent to take the drug. The United Nations Special Rapporteur On Torture has classified this as a human rights violation and cruel or inhuman treatment. [17]

The first LAI antipsychotics (often referred to as simply "LAIs") were the typical antipsychotics fluphenazine and haloperidol. [18] Both fluphenazile and haloperidol are formulated as decanoates, referring to the attachment of a decanoic acid group to the antipsychotic molecule. [18] These are then dissolved in an organic oil. [18] Together, these modifications prevent the active medications from being released immediately upon injection, attaining a slow release of the active medications (note, though, that the fluphenazine decanoate product is unique for reaching peak fluphenazine blood levels within 24 hours after administration [19] ). [18] Fluphenazine decanoate can be administered every 7 to 21 days (usually every 14 to 28 days), [19] while haloperidol decanoate can be administered every 28 days, though some people receive more or less frequent injections. [18] If a scheduled injection of either haloperidol decanoate or fluphenazine decanoate is missed, recommendations for administering make-up injectable dose(s) or providing antipsychotics to be taken by mouth vary by, e.g., how long ago the last injection was and how many previous injections the person has received (i.e., if steady state levels of the medication have been reached or not). [19]

Both of the typical antipsychotic LAIs are inexpensive in comparison to the atypical LAIs. [18] Doctors usually prefer atypical LAIs over typical LAIs due to the differences in adverse effects between typical and atypical antipsychotics in general. [19]

Pharmacokinetics of long-acting injectable antipsychotics
MedicationBrand nameClassVehicleDosageTmaxt1/2 singlet1/2 multiplelogPcRef
Aripiprazole lauroxil Aristada Atypical Water a441–1064 mg/4–8 weeks24–35 days ?54–57 days7.9–10.0
Aripiprazole monohydrate Abilify Maintena Atypical Water a300–400 mg/4 weeks7 days ?30–47 days4.9–5.2
Bromperidol decanoate Impromen DecanoasTypical Sesame oil 40–300 mg/4 weeks3–9 days ?21–25 days7.9 [20]
Clopentixol decanoate Sordinol DepotTypical Viscoleo b50–600 mg/1–4 weeks4–7 days ?19 days9.0 [21]
Flupentixol decanoate DepixolTypical Viscoleo b10–200 mg/2–4 weeks4–10 days8 days17 days7.2–9.2 [21] [22]
Fluphenazine decanoate Prolixin DecanoateTypical Sesame oil 12.5–100 mg/2–5 weeks1–2 days1–10 days14–100 days7.2–9.0 [23] [24] [25]
Fluphenazine enanthate Prolixin EnanthateTypical Sesame oil 12.5–100 mg/1–4 weeks2–3 days4 days ?6.4–7.4 [24]
Fluspirilene Imap, RedeptinTypical Water a2–12 mg/1 week1–8 days7 days ?5.2–5.8 [26]
Haloperidol decanoate Haldol DecanoateTypical Sesame oil 20–400 mg/2–4 weeks3–9 days18–21 days7.2–7.9 [27] [28]
Olanzapine pamoate Zyprexa Relprevv Atypical Water a150–405 mg/2–4 weeks7 days ?30 days
Oxyprothepin decanoate MeclopinTypical ? ? ? ? ?8.5–8.7
Paliperidone palmitate Invega Sustenna Atypical Water a39–819 mg/4–12 weeks13–33 days25–139 days ?8.1–10.1
Perphenazine decanoate Trilafon DekanoatTypical Sesame oil 50–200 mg/2–4 weeks ? ?27 days8.9
Perphenazine enanthate Trilafon EnanthateTypical Sesame oil 25–200 mg/2 weeks2–3 days ?4–7 days6.4–7.2 [29]
Pipotiazine palmitate Piportil LongumTypical Viscoleo b25–400 mg/4 weeks9–10 days ?14–21 days8.5–11.6 [22]
Pipotiazine undecylenate Piportil MediumTypical Sesame oil 100–200 mg/2 weeks ? ? ?8.4
Risperidone Risperdal Consta Atypical Microspheres 12.5–75 mg/2 weeks21 days ?3–6 days
Zuclopentixol acetate Clopixol AcuphaseTypical Viscoleo b50–200 mg/1–3 days1–2 days1–2 days4.7–4.9
Zuclopentixol decanoate Clopixol DepotTypical Viscoleo b50–800 mg/2–4 weeks4–9 days ?11–21 days7.5–9.0
Note: All by intramuscular injection. Footnotes:a = Microcrystalline or nanocrystalline aqueous suspension. b = Low-viscosity vegetable oil (specifically fractionated coconut oil with medium-chain triglycerides). c = Predicted, from PubChem and DrugBank. Sources:Main: See template.

History

Advertisement for Thorazine (chlorpromazine) from the 1950s, reflecting the perceptions of psychosis, including the now-discredited perception of a tendency towards violence, from the time when antipsychotics were discovered Thorazine advert.jpg
Advertisement for Thorazine (chlorpromazine) from the 1950s, reflecting the perceptions of psychosis, including the now-discredited perception of a tendency towards violence, from the time when antipsychotics were discovered

The original antipsychotic drugs were happened upon largely by chance and then tested for their effectiveness. The first, chlorpromazine, was developed as a surgical anesthetic after an initial report in 1952. [5] It was first used in psychiatric institutions because of its powerful tranquilizing effect; at the time it was advertised as a "pharmacological lobotomy". [31] (Note that "tranquilizing" here only refers to changes in external behavior, while the experience a person has internally may be one of increased agitation but inability to express it.) [32]

Until the 1970s there was considerable debate within psychiatry on the most appropriate term to use to describe the new drugs. [33] In the late 1950s the most widely used term was "neuroleptic", followed by "major tranquilizer" and then "ataraxic". [33] The word neuroleptic was coined in 1955 by Delay and Deniker after their discovery (1952) of the antipsychotic effects of chlorpromazine. [33] It is derived from the Greek : "νεῦρον" (neuron, originally meaning "sinew" but today referring to the nerves) and "λαμβάνω" (lambanō, meaning "take hold of"). Thus, the word means taking hold of one's nerves. It was often taken to refer also to common effects such as reduced activity in general, as well as lethargy and impaired motor control. Although these effects are unpleasant and harmful, they were, along with akathisia, considered a reliable sign that the drug was working. [31] These terms have been largely replaced by the term "antipsychotic" in medical and advertising literature, which refers to the medication's more-marketable effects. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Antipsychotic</span> Class of medications

Antipsychotics, previously known as neuroleptics and major tranquilizers, are a class of psychotropic medication primarily used to manage psychosis, principally in schizophrenia but also in a range of other psychotic disorders. They are also the mainstay, together with mood stabilizers, in the treatment of bipolar disorder. Moreover, they are also used as adjuncts in the treatment of treatment-resistant major depressive disorder.

<span class="mw-page-title-main">Haloperidol</span> Typical antipsychotic medication

Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the treatment of schizophrenia, tics in Tourette syndrome, mania in bipolar disorder, delirium, agitation, acute psychosis, and hallucinations from alcohol withdrawal. It may be used by mouth or injection into a muscle or a vein. Haloperidol typically works within 30 to 60 minutes. A long-acting formulation may be used as an injection every four weeks by people with schizophrenia or related illnesses, who either forget or refuse to take the medication by mouth.

<span class="mw-page-title-main">Fluphenazine</span> Typical antipsychotic medication

Fluphenazine, sold under the brand name Prolixin among others, is a high-potency typical antipsychotic medication. It is used in the treatment of chronic psychoses such as schizophrenia, and appears to be about equal in effectiveness to low-potency antipsychotics like chlorpromazine. It is given by mouth, injection into a muscle, or just under the skin. There is also a long acting injectable version that may last for up to four weeks. Fluphenazine decanoate, the depot injection form of fluphenazine, should not be used by people with severe depression.

<span class="mw-page-title-main">Atypical antipsychotic</span> Class of pharmaceutical drugs

The atypical antipsychotics (AAP), also known as second generation antipsychotics (SGAs) and serotonin–dopamine antagonists (SDAs), are a group of antipsychotic drugs largely introduced after the 1970s and used to treat psychiatric conditions. Some atypical antipsychotics have received regulatory approval for schizophrenia, bipolar disorder, irritability in autism, and as an adjunct in major depressive disorder.

<span class="mw-page-title-main">Risperidone</span> Antipsychotic medication

Risperidone, sold under the brand name Risperdal among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder. It is taken either by mouth or by injection. The injectable versions are long-acting and last for 2–4 weeks.

<span class="mw-page-title-main">Perphenazine</span> Antipsychotic medication

Perphenazine is a typical antipsychotic drug. Chemically, it is classified as a piperazinyl phenothiazine. Originally marketed in the United States as Trilafon, it has been in clinical use for decades.

<span class="mw-page-title-main">Tardive dyskinesia</span> Neurological disorder featuring involuntary, repetitive body movements

Tardive dyskinesia (TD) is a disorder that results in involuntary repetitive body movements, which may include grimacing, sticking out the tongue or smacking the lips. Additionally, there may be rapid jerking movements or slow writhing movements. In about 20% of people with TD, the disorder interferes with daily functioning. Reversibility of the condition is determined primarily by severity of symptoms and how long the condition has been present before stopping the offending drug.

<span class="mw-page-title-main">Haloperidol decanoate</span> Typical antipsychotic medication

Haloperidol decanoate, sold under the brand name Haldol Decanoate among others, is a typical antipsychotic which is used in the treatment of schizophrenia. It is administered by injection into muscle at a dose of 100 to 200 mg once every 4 weeks or monthly. The dorsogluteal site is recommended. A 3.75-cm (1.5-inch), 21-gauge needle is generally used, but obese individuals may require a 6.5-cm (2.5-inch) needle to ensure that the drug is indeed injected intramuscularly and not subcutaneously. Haloperidol decanoate is provided in the form of 50 or 100 mg/mL oil solution of sesame oil and benzyl alcohol in ampoules or pre-filled syringes. Its elimination half-life after multiple doses is 21 days. The medication is marketed in many countries throughout the world.

<span class="mw-page-title-main">Flupentixol</span> Typical antipsychotic drug of the thioxanthene class

Flupentixol influences on brain. Flupentixol (INN), also known as flupenthixol, marketed under brand names such as Depixol and Fluanxol is a typical antipsychotic drug of the thioxanthene class. It was introduced in 1965 by Lundbeck. In addition to single drug preparations, it is also available as flupentixol/melitracen—a combination product containing both melitracen and flupentixol . Flupentixol is not approved for use in the United States. It is, however, approved for use in the UK, Australia, Canada, Russian Federation, South Africa, New Zealand, Philippines, Iran, Germany, and various other countries.

Extrapyramidal symptoms (EPS) are symptoms that are archetypically associated with the extrapyramidal system of the brain's cerebral cortex. When such symptoms are caused by medications or other drugs, they are also known as extrapyramidal side effects (EPSE). The symptoms can be acute (short-term) or chronic (long-term). They include movement dysfunction such as dystonia, akathisia, parkinsonism characteristic symptoms such as rigidity, bradykinesia, tremor, and tardive dyskinesia. Extrapyramidal symptoms are a reason why subjects drop out of clinical trials of antipsychotics; of the 213 (14.6%) subjects that dropped out of one of the largest clinical trials of antipsychotics, 58 (27.2%) of those discontinuations were due to EPS.

<span class="mw-page-title-main">Fluspirilene</span> Typical antipsychotic medication

Fluspirilene is a diphenylbutylpiperidine typical antipsychotic drug, used for the treatment of schizophrenia. It is administered intramuscularly. It was discovered at Janssen Pharmaceutica in 1963. A 2007 systematic review investigated the efficacy of fluspirilene decanoate for people with schizophrenia:

<span class="mw-page-title-main">Bromperidol</span> Chemical compound

Bromperidol, sold under the brand names Bromidol and Impromen among others, is a typical antipsychotic of the butyrophenone group which is used in the treatment of schizophrenia. It was discovered at Janssen Pharmaceutica in 1966. An ester prodrug, bromperidol decanoate, is a long-acting form of bromperidol used as a depot injectable.

<span class="mw-page-title-main">Zuclopenthixol</span> Typical antipsychotic medication

Zuclopenthixol, also known as zuclopentixol, is a medication used to treat schizophrenia and other psychoses. It is classed, pharmacologically, as a typical antipsychotic. Chemically it is a thioxanthene. It is the cis-isomer of clopenthixol. Clopenthixol was introduced in 1961, while zuclopenthixol was introduced in 1978.

<span class="mw-page-title-main">Clopenthixol</span> Antipsychotic medication

Clopenthixol (Sordinol), also known as clopentixol, is a typical antipsychotic drug of the thioxanthene class. It was introduced by Lundbeck in 1961.

<span class="mw-page-title-main">Pipotiazine</span> Typical antipsychotic medication

Pipotiazine (Piportil), also known as pipothiazine, is a typical antipsychotic of the phenothiazine class used in the United Kingdom and other countries for the treatment of schizophrenia. Its properties are similar to those of chlorpromazine. A 2004 systematic review investigated its efficacy for people with schizophrenia:

<span class="mw-page-title-main">Aripiprazole lauroxil</span> Chemical compound

Aripiprazole lauroxil, sold under the brand name Aristada, is a long-acting injectable atypical antipsychotic that was developed by Alkermes. It is an N-acyloxymethyl prodrug of aripiprazole that is administered via intramuscular injection once every four to eight weeks for the treatment of schizophrenia. Aripiprazole lauroxil was approved by the U.S. Food and Drug Administration (FDA) on 5 October 2015.

<span class="mw-page-title-main">Bromperidol decanoate</span> Chemical compound

Bromperidol decanoate, sold under the brand names Bromidol Depot, Bromodol Decanoato, and Impromen Decanoas, is an antipsychotic which has been marketed in Europe and Latin America. It is an antipsychotic ester and long-acting prodrug of bromperidol which is administered by depot intramuscular injection once every 4 weeks.

<span class="mw-page-title-main">Perphenazine enanthate</span> Typical antipsychotic medication

Perphenazine enanthate, sold under the brand name Trilafon Enantat among others, is a typical antipsychotic and a depot antipsychotic ester which is used in the treatment of schizophrenia and has been marketed in Europe. It is formulated in sesame oil and administered by intramuscular injection and acts as a long-lasting prodrug of perphenazine. Perphenazine enanthate is used at a dose of 25 to 200 mg once every 2 weeks by injection, with a time to peak levels of 2 to 3 days and an elimination half-life of 4 to 7 days.

<span class="mw-page-title-main">Oxyprothepin decanoate</span> Antipsychotic medication

Oxyprothepin decanoate, sold under the brand name Meclopin, is a typical antipsychotic which was used in the treatment of schizophrenia in the Czech Republic but is no longer marketed. It is administered by depot injection into muscle. The medication has an approximate duration of 2 to 3 weeks. The history of oxyprothepin decanoate has been reviewed.

<span class="mw-page-title-main">Antipsychotic ester</span> Class of prodrugs

An antipsychotic ester is an ester of an antipsychotic. They are used clinically as prodrugs to increase fat solubility and thereby prolong duration when antipsychotics are used as depot injectables.

References

  1. Shen WW (1999). "A history of antipsychotic drug development". Comprehensive Psychiatry. 40 (6): 407–14. doi:10.1016/s0010-440x(99)90082-2. PMID   10579370.
  2. "A roadmap to key pharmacologic principles in using antipsychotics". Primary Care Companion to the Journal of Clinical Psychiatry. 9 (6): 444–54. 2007. doi:10.4088/PCC.v09n0607. PMC   2139919 . PMID   18185824.
  3. Tyrer P, Kendall T (January 2009). "The spurious advance of antipsychotic drug therapy". Lancet. 373 (9657): 4–5. doi:10.1016/S0140-6736(08)61765-1. PMID   19058841. S2CID   19951248. Archived from the original on 2023-02-06. Retrieved 2023-03-02.
  4. "Not found". www.rcpsych.ac.uk. Archived from the original on 8 May 2018. Retrieved 8 May 2018.
  5. 1 2 3 4 5 6 7 Schatzberg's Manual of Clinical Psychopharmacology (Ninth ed.). American Psychiatric Association Publishing. 2019. ISBN   978-1-61537-230-0.
  6. Yassa R, Lal S (May 1986). "Prevalence of the rabbit syndrome". The American Journal of Psychiatry. 143 (5): 656–7. doi:10.1176/ajp.143.5.656. PMID   2870650.
  7. Llorca PM, Chereau I, Bayle FJ, Lancon C (May 2002). "Tardive dyskinesias and antipsychotics: a review". European Psychiatry. 17 (3): 129–38. doi:10.1016/S0924-9338(02)00647-8. PMID   12052573. S2CID   40761404.
  8. Office of the Commissioner (24 March 2020). "FDA approves first drug to treat tardive dyskinesia". FDA. Retrieved 18 June 2020.
  9. Pardis P, Remington G, Panda R, Lemez M, Agid O (October 2019). "Clozapine and tardive dyskinesia in patients with schizophrenia: A systematic review". Journal of Psychopharmacology. 33 (10): 1187–1198. doi:10.1177/0269881119862535. PMID   31347436. S2CID   198912192.
  10. "Tardive dyskinesia: MedlinePlus Medical Encyclopedia". Archived from the original on 2017-01-31. Retrieved 2017-01-18.[ full citation needed ]
  11. Wang PS, Schneeweiss S, Avorn J, Fischer MA, Mogun H, Solomon DH, Brookhart MA (December 2005). "Risk of death in elderly users of conventional vs. atypical antipsychotic medications". The New England Journal of Medicine. 353 (22): 2335–41. doi: 10.1056/NEJMoa052827 . PMID   16319382. S2CID   35202051.
  12. Gitlin MJ (1996). The psychotherapist's guide to psychopharmacology. New York: Free Press. p. 392. ISBN   0-684-82737-9.
  13. Woods SW (June 2003). "Chlorpromazine equivalent doses for the newer atypical antipsychotics". The Journal of Clinical Psychiatry. 64 (6): 663–7. doi:10.4088/JCP.v64n0607. PMID   12823080.
  14. Rijcken CA, Monster TB, Brouwers JR, de Jong-van den Berg LT (December 2003). "Chlorpromazine equivalents versus defined daily doses: how to compare antipsychotic drug doses?". Journal of Clinical Psychopharmacology. 23 (6): 657–9. doi:10.1097/01.jcp.0000096247.29231.3a. PMID   14624195. S2CID   12939895.
  15. 1 2 3 4 5 Patel MX, Arista IA, Taylor M, Barnes TR (September 2013). "How to compare doses of different antipsychotics: a systematic review of methods". Schizophrenia Research. 149 (1–3): 141–8. doi:10.1016/j.schres.2013.06.030. PMID   23845387. S2CID   45642900.
  16. Martindale: The Complete Drug Reference. The Royal Pharmaceutical Society of Great Britain. 2013. Retrieved 2 November 2013.
  17. "Special rapporteur on torture and other cruel, inhuman or degrading treatment or punishment" (PDF). Retrieved 2024-02-07.
  18. 1 2 3 4 5 6 Kennedy WK (2012). "When and how to use long-acting injectable antipsychotics". Current Psychiatry. 11 (8): 40–43.
  19. 1 2 3 4 Carpenter J, Wong KK (2018). "Long-acting injectable antipsychotics: What to do about missed doses". Current Psychiatry. 17 (7): 10–12, 14–19, 56.
  20. Parent M, Toussaint C, Gilson H (1983). "Long-term treatment of chronic psychotics with bromperidol decanoate: clinical and pharmacokinetic evaluation". Current Therapeutic Research. 34 (1): 1–6.
  21. 1 2 Jørgensen A, Overø KF (1980). "Clopenthixol and flupenthixol depot preparations in outpatient schizophrenics. III. Serum levels". Acta Psychiatrica Scandinavica. Supplementum. 279: 41–54. doi:10.1111/j.1600-0447.1980.tb07082.x. PMID   6931472.
  22. 1 2 Reynolds JE (1993). "Anxiolytic sedatives, hypnotics and neuroleptics.". Martindale: The Extra Pharmacopoeia (30th ed.). London: Pharmaceutical Press. pp. 364–623.
  23. Ereshefsky L, Saklad SR, Jann MW, Davis CM, Richards A, Seidel DR (May 1984). "Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches". The Journal of Clinical Psychiatry. 45 (5 Pt 2): 50–9. PMID   6143748.
  24. 1 2 Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA (April 1979). "Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man". British Journal of Clinical Pharmacology. 7 (4): 325–31. doi:10.1111/j.1365-2125.1979.tb00941.x. PMC   1429660 . PMID   444352.
  25. Young D, Ereshefsky L, Saklad SR, Jann MW, Garcia N (1984). Explaining the pharmacokinetics of fluphenazine through computer simulations. (Abstract.). 19th Annual Midyear Clinical Meeting of the American Society of Hospital Pharmacists. Dallas, Texas.
  26. Janssen PA, Niemegeers CJ, Schellekens KH, Lenaerts FM, Verbruggen FJ, van Nueten JM, et al. (November 1970). "The pharmacology of fluspirilene (R 6218), a potent, long-acting and injectable neuroleptic drug". Arzneimittel-Forschung. 20 (11): 1689–98. PMID   4992598.
  27. Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in psychosis". Drugs. 33 (1): 31–49. doi:10.2165/00003495-198733010-00002. PMID   3545764.
  28. Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year follow-up". International Pharmacopsychiatry. 17 (4): 238–46. doi:10.1159/000468580. PMID   7185768.
  29. Larsson M, Axelsson R, Forsman A (1984). "On the pharmacokinetics of perphenazine: a clinical study of perphenazine enanthate and decanoate". Current Therapeutic Research. 36 (6): 1071–88.
  30. The text reads: "When the patient lashes out against 'them' - THORAZINE (brand of chlorpromazine) quickly puts an end to his violent outburst. 'Thorazine' is especially effective when the psychotic episode is triggered by delusions or hallucinations. At the outset of treatment, Thorazine's combination of antipsychotic and sedative effects provides both emotional and physical calming. Assaultive or destructive behavior is rapidly controlled. As therapy continues, the initial sedative effect gradually disappears. But the antipsychotic effect continues, helping to dispel or modify delusions, hallucinations and confusion, while keeping the patient calm and approachable. SMITH KLINE AND FRENCH LABORATORIES leaders in psychopharmaceutical research."
  31. 1 2 Pieters T, Majerus B (December 2011). "The introduction of chlorpromazine in Belgium and the Netherlands (1951-1968); tango between old and new treatment features". Studies in History and Philosophy of Biological and Biomedical Sciences. 42 (4): 443–52. doi:10.1016/j.shpsc.2011.05.003. PMID   22035718. Archived from the original on 9 July 2017.
  32. Muench, John (1 March 2010). "Adverse Effects Of Antipsychotics". American Family Physician. 81 (5): 617–622. Retrieved 23 March 2021.
  33. 1 2 3 4 King C, Voruganti LN (May 2002). "What's in a name? The evolution of the nomenclature of antipsychotic drugs". Journal of Psychiatry & Neuroscience. 27 (3): 168–75. PMC   161646 . PMID   12066446.