Water-meadow

Last updated
The water meadow at Magdalen College, Oxford, is an island in the River Cherwell Magdalen college oxford water meadow flooded 1.jpg
The water meadow at Magdalen College, Oxford, is an island in the River Cherwell

A water-meadow (also water meadow or watermeadow) is an area of grassland subject to controlled irrigation to increase agricultural productivity. Water-meadows were mainly used in Europe from the 16th to the early 20th centuries. Working water-meadows have now largely disappeared, but the field patterns and water channels of derelict water-meadows remain common in areas where they were used, such as parts of Northern Italy, Switzerland and England. Derelict water-meadows are often of importance as wetland wildlife habitats.

Contents

Water-meadows should not be confused with flood-meadows, which are naturally covered in shallow water by seasonal flooding from a river. "Water-meadow" is sometimes used more loosely to mean any level grassland beside a river.

Types

Two main types of water-meadow were used.

Catchwork water-meadow

These were used for fields on slopes, and relatively little engineering skill was required to construct them. Water from a stream or spring was fed to the top of a sloping field, and gentle sloping terraces were formed along which the water could trickle in a zig-zag fashion down the field. The water could be used again for fields lower down the slope.

Bedwork water-meadow

Flooded derelict bedwork water-meadow at Fordingbridge, Hampshire, England. Winter flooding has filled an old carrier channel along the crest of a ridge (running from right foreground to middle distance), and has also flooded the drainage channels (on left and into distance, where they join the river). In use, water would have seeped from the carrier channel on the right, through the grass in the foreground into the drainage channel on the left, which would have looked almost empty. Flooded water-meadow.jpg
Flooded derelict bedwork water-meadow at Fordingbridge, Hampshire, England. Winter flooding has filled an old carrier channel along the crest of a ridge (running from right foreground to middle distance), and has also flooded the drainage channels (on left and into distance, where they join the river). In use, water would have seeped from the carrier channel on the right, through the grass in the foreground into the drainage channel on the left, which would have looked almost empty.

Bedwork or floated water-meadows were built on almost-level fields along broad river valleys; they required careful construction to ensure correct operation.

A leat, called a main, carrier or top carrier, diverted water from the river and carried it down the valley at a gentler slope than the river, producing a hydrostatic head between the two. Mains were often along the edge of the valley, each main supplying up to about 1 km (0.6 mi) of the valley. The water from the main was used to supply many smaller carriers, on the crests of ridges built across the fields. The channel on the crest of each ridge would overflow slowly down the sides (the panes) of the ridge, the channel eventually tapering to an end at the tip of the ridge. The seeping water would then collect between the ridges, in drains or drawns, these joining to form a bottom carrier or tail drain which returned the water to the river. The ridges and the drains made an interlocking grid (like interlaced fingers), but the ridge-top channels and the drains did not connect directly. A by-carrier took any water not needed for irrigation straight from the main back to the river. The ridges varied in height depending on the available head usually from around 10 to 50 cm (4 to 20 in). The pattern of carriers and drains was generally regular, but it was adapted to fit the natural topography of the ground and the locations of suitable places for the offtake and return of water.

The water flow was controlled by a system of hatches (sluice gates) and stops (small earth or wooden-board dams). Irrigation could be provided separately for each section of water-meadow. Sometimes aqueducts took carriers over drains, and causeways and culverts provided access for wagons. The working or floating (irrigation) and maintenance of the water-meadow was done by a highly skilled craftsman called a drowner or waterman, who was often employed by several adjacent farmers.

The terminology used for watermeadows varied considerably with locality and dialect.[ citation needed ]

Uses

Water-meadow irrigation did not aim to flood the ground, but to keep it continuously damp a working water-meadow has no standing water. Irrigation in early spring kept frosts off the ground and so allowed grass to grow several weeks earlier than otherwise, and in dry summer weather irrigation kept the grass growing. It also allowed the ground to absorb any plant nutrients or silt carried by the river water this fertilised the grassland, and incidentally also reduced eutrophication of the river water by nutrient pollution. The grass was used both for making hay and for grazing by livestock (usually cattle or sheep).

Derelict water-meadows

Former water-meadows are found along many river valleys, where the sluice gates, channels and field ridges may still be visible (however the ridges should not be confused with ridge and furrow topography, which is found on drier ground and has a very different origin in arable farming). The drains in a derelict water-meadow are generally clogged and wet, and most of the carrier channels are dry, with the smaller ones on the ridge-tops often invisible. If any main carrier channels still flow, they usually connect permanently to the by-carriers. The larger sluices may be concealed under the roots of trees (such as crack willows), which have grown up from seedlings established in the brickwork. The complex mixture of wet and drier ground often gives derelict water-meadows particularly high wetland biodiversity.

Working water-meadows

Derelict water-meadows can be transformed into wildlife protection and conservation areas by repairing and operating the irrigation, as is the case of Josefov Meadows in the Czech Republic. By imitating the natural river flooding which is rare in modern straightened and dammed rivers, a rich biodiversity can be restored and attract and sustain many rare and protected wetland species.

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Leat</span> Artificial watercourse or aqueduct dug into the ground

A leat is the name, common in the south and west of England and in Wales, for an artificial watercourse or aqueduct dug into the ground, especially one supplying water to a watermill or its mill pond. Other common uses for leats include delivery of water for hydraulic mining and mineral concentration, for irrigation, to serve a dye works or other industrial plant, and provision of drinking water to a farm or household or as a catchment cut-off to improve the yield of a reservoir.

<span class="mw-page-title-main">Prairie</span> Ecosystems considered part of the temperate grasslands, savannas, and shrublands biome

Prairies are ecosystems considered part of the temperate grasslands, savannas, and shrublands biome by ecologists, based on similar temperate climates, moderate rainfall, and a composition of grasses, herbs, and shrubs, rather than trees, as the dominant vegetation type. Temperate grassland regions include the Pampas of Argentina, Brazil and Uruguay, and the steppe of Ukraine, Russia, and Kazakhstan. Lands typically referred to as "prairie" tend to be in North America. The term encompasses the area referred to as the Interior Lowlands of Canada, the United States, and Mexico, which includes all of the Great Plains as well as the wetter, hillier land to the east.

<span class="mw-page-title-main">Ouse Washes</span> Nature reserve in the United Kingdom

Ouse Washes is a linear 2,513.6-hectare (6,211-acre) biological Site of Special Scientific Interest stretching from near St Ives in Cambridgeshire to Downham Market in Norfolk. It is also a Ramsar internationally important wetland site, a Special Protection Area for birds, a Special Area of Conservation and a Nature Conservation Review site, Grade I. An area of 186 hectares between March and Ely is managed by the Wildlife Trust for Bedfordshire, Cambridgeshire and Northamptonshire and another area near Chatteris is managed by the Royal Society for the Protection of Birds. The Wildfowl & Wetlands Trust manages another area near Welney.

<span class="mw-page-title-main">Marsh</span> Low-lying and seasonally waterlogged land

In ecology, a marsh is a wetland that is dominated by herbaceous plants rather than by woody plants. More in general, the word can be used for any low-lying and seasonally waterlogged terrain. In Europe and in agricultural literature low-lying meadows that require draining and embanked polderlands are also referred to as marshes or marshland.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

<span class="mw-page-title-main">River Idle</span> River in Nottinghamshire, England

The River Idle is a river in Nottinghamshire, England whose source is the confluence of the River Maun and River Meden near Markham Moor. The Idle flows north from its source through Retford and Bawtry before entering the River Trent at West Stockwith. Its main tributaries are the River Poulter and the River Ryton. The river is navigable to Bawtry, and there is a statutory right of navigation to Retford. Most of the land surrounding the river is a broad flood plain and the river is important for conservation, with Sites of Special Scientific Interest being designated along its course.

<span class="mw-page-title-main">Feather River</span> River in California, United States

The Feather River is the principal tributary of the Sacramento River, in the Sacramento Valley of Northern California. The river's main stem is about 73 miles (117 km) long. Its length to its most distant headwater tributary is just over 210 miles (340 km). The main stem Feather River begins in Lake Oroville, where its four long tributary forks join—the South Fork, Middle Fork, North Fork, and West Branch Feather Rivers. These and other tributaries drain part of the northern Sierra Nevada, and the extreme southern Cascades, as well as a small portion of the Sacramento Valley. The total drainage basin is about 6,200 square miles (16,000 km2), with approximately 3,604 square miles (9,330 km2) above Lake Oroville.

<span class="mw-page-title-main">California Central Valley grasslands</span> Temperate grasslands, savannas, and shrublands ecoregion in California, United States

The California Central Valley grasslands is a temperate grasslands, savannas, and shrublands ecoregion in California's Central Valley. It a diverse ecoregion containing areas of desert grassland, prairie, savanna, riparian forest, marsh, several types of seasonal vernal pools, and large lakes such as now-dry Tulare Lake, Buena Vista Lake, and Kern Lake.

<span class="mw-page-title-main">Yolo Bypass</span> Flood bypass in the Sacramento Valley

The Yolo Bypass is one of the two flood bypasses in California's Sacramento Valley located in Yolo and Solano Counties. Through a system of weirs, the bypass diverts floodwaters from the Sacramento River away from the state's capital city of Sacramento and other nearby riverside communities.

<span class="mw-page-title-main">Periyar River</span> River in Kerala, India

Periyar, IPA:[peɾijɐːr], is the longest river and the river with the largest discharge potential in the Indian state of Kerala. It is one of the few perennial rivers in the region and provides drinking water for several major towns. The Periyar is of utmost significance to the economy of Kerala. It generates a significant proportion of Kerala's electrical power via the Idukki Dam and flows along a region of industrial and commercial activity. The river also provides water for irrigation and domestic use throughout its course besides supporting a rich fishery. Due to these reasons, the river has been named the "Lifeline of Kerala". Kochi city, in the vicinity of the river mouth, draws its water supply from Aluva, an upstream site sufficiently free of seawater intrusion. Twenty five percent of Kerala's industries are along the banks of the Periyar. These are mostly crowded within a stretch of 5 kilometres (3 mi) in the Eloor-Edayar region (Udhyogamandal), about 10 kilometres (6 mi) north of Kochi harbor.

<span class="mw-page-title-main">Hadejia-Nguru wetlands</span>

The Hadejia-Nguru wetlands in Yobe State in northern Nigeria, which include Nguru Lake, are ecologically and economically important. They are threatened by reduced rainfall in recent years, a growing population and upstream dam construction.

<span class="mw-page-title-main">CiƩnega</span> Wetland system unique to the American Southwest

A ciénega is a wetland system unique to the American Southwest and Northern Mexico. Ciénagas are alkaline, freshwater, spongy, wet meadows with shallow-gradient, permanently saturated soils in otherwise arid landscapes that often occupy nearly the entire widths of valley bottoms. That description satisfies historic, pre-damaged ciénagas, although few can be described that way now. Incised ciénagas are common today. Ciénagas are usually associated with seeps or springs, found in canyon headwaters or along margins of streams. Ciénagas often occur because the geomorphology forces water to the surface, over large areas, not merely through a single pool or channel. In a healthy ciénaga, water slowly migrates through long, wide-scale mats of thick, sponge-like wetland sod. Ciénaga soils are squishy, permanently saturated, highly organic, black in color or anaerobic. Highly adapted sedges, rushes and reeds are the dominant plants, with succession plants—Goodding's willow, Fremont cottonwoods and scattered Arizona walnuts—found on drier margins, down-valley in healthy ciénagas where water goes underground or along the banks of incised ciénagas.

<span class="mw-page-title-main">River engineering</span> Study of human intervention in the course, characteristics, or flow of rivers

River engineering is a discipline of civil engineering which studies human intervention in the course, characteristics, or flow of a river with the intention of producing some defined benefit. People have intervened in the natural course and behaviour of rivers since before recorded history—to manage the water resources, to protect against flooding, or to make passage along or across rivers easier. Since the Yuan Dynasty and Ancient Roman times, rivers have been used as a source of hydropower. From the late 20th century, the practice of river engineering has responded to environmental concerns broader than immediate human benefit. Some river engineering projects have focused exclusively on the restoration or protection of natural characteristics and habitats.

<span class="mw-page-title-main">Wet meadow</span>

A wet meadow is a type of wetland with soils that are saturated for part or all of the growing season which prevents the growth of trees and brush. Debate exists whether a wet meadow is a type of marsh or a completely separate type of wetland. Wet prairies and wet savannas are hydrologically similar.

<span class="mw-page-title-main">Snake River Plain (ecoregion)</span> Ecoregion in the northwestern United States

The Snake River Plain ecoregion is a Level III ecoregion designated by the United States Environmental Protection Agency (EPA) in the U.S. states of Idaho and Oregon. It follows the Snake River across Idaho, stretching roughly 400 miles (640 km) from the Wyoming border to Eastern Oregon in the xeric intermontane west. Characterized by plains and low hills, it is considerably lower and less rugged than surrounding ecoregions. Many of the alluvial valleys bordering the Snake River are used for agriculture. Where irrigation water and soil depth are sufficient, sugar beets, potatoes, alfalfa, small grains, and vegetables are grown. Elsewhere, livestock grazing is widespread. Cattle feedlots and dairy operations are found locally.

<span class="mw-page-title-main">Northern Basin and Range ecoregion</span>

The Northern Basin and Range ecoregion is a Level III ecoregion designated by the United States Environmental Protection Agency (EPA) in the U.S. states of Oregon, Idaho, Nevada, Utah, and California. It contains dissected lava plains, rolling hills, alluvial fans, valleys, and scattered mountain ranges in the northern part of the Great Basin. Although arid, the ecoregion is higher and cooler than the Snake River Plain to the north and has more available moisture and a cooler climate than the Central Basin and Range to the south. Its southern boundary is determined by the highest shoreline of Pleistocene Lake Bonneville, which once inundated the Central Basin and Range. The western part of the region is internally drained; its eastern stream network drains to the Snake River system.

<span class="mw-page-title-main">Minsmere River</span> River in Suffolk, England

Minsmere River is a river in the English county of Suffolk which flows into the North Sea at Minsmere. The river is formed from the River Yox at Yoxford before flowing through Middleton, Eastbridge and Minsmere. It flows to the south of Minsmere RSPB reserve helping to form many of the wetland habitats at the reserve.

The Mississippi Alluvial Plain is a Level III ecoregion designated by the Environmental Protection Agency (EPA) in seven U.S. states, though predominantly in Arkansas, Louisiana, and Mississippi. It parallels the Mississippi River from the Midwestern United States to the Gulf of Mexico.

Callows are a type of wetland found in Ireland. They are a seasonally flooded grassland ecosystem found on low-lying river floodplains.

Sturgeon Bay Provincial Park is a provincial park on the western shore of Lake Winnipeg in Manitoba, Canada. The park is considered to be a Class Ib protected area under the IUCN protected area management categories. It is 144.9 km2 (55.9 sq mi) in size.