1-Deoxynojirimycin

Last updated
1-Deoxynojirimycin
1-Deoxynojirimycin.svg
Names
Preferred IUPAC name
(2R,3R,4R,5S)-2-(Hydroxymethyl)piperidine-3,4,5-triol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.119.812 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C6H13NO4/c8-2-3-5(10)6(11)4(9)1-7-3/h3-11H,1-2H2/t3-,4+,5-,6-/m1/s1
    Key: LXBIFEVIBLOUGU-JGWLITMVSA-N
  • C1[C@@H]([C@H]([C@@H]([C@H](N1)CO)O)O)O
Properties
C6H13NO4
Molar mass 163.173 g·mol−1
Melting point 195 °C (383 °F; 468 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1-Deoxynojirimycin (DNJ or 1-DNJ), also called duvoglustat or moranolin, [1] is an alpha-glucosidase inhibitor, most commonly found in mulberry leaves. Although it can be obtained in small quantities by brewing an herbal tea from mulberry leaves, interest in commercial production has led to research on developing mulberry tea higher in DNJ, [2] and on alternate routes of production, such as via Bacillus species. [3]

Contents

Biosynthesis

1-Deoxynojirimycin is a polyhydroxylated piperidine alkaloid produced from D-Glucose in various plants, such as Commelina communis, and in the Streptomyces and Bacillus bacteria. [4] [5] High quantities of this azasugar are produced in Bacillus subtilis, a process initiated by a TYB gene cluster composed of gabT1 (aminotransferase), yktc1 (phosphatase), and gutB1 (oxidoreductase). [6] [7]

In Bacillus subtilis,D-glucose first undergoes glycolysis, opening the 6 member ring and producing fructose-6-phosphate. [8] GabT1 catalyzes transamination at the C2 position, followed by a dephosphorylation by the Yktc1 enzyme, [7] resulting in 2-amino-2-deoxy-D-mannitol (ADM), an essential precursor. [8] Regio-selective oxidation by GutB1 [7] occurs at the exposed C6 hydroxyl of ADM, pushing a C2-N-C6 cyclization of the resulting 6-oxo intermediate, [9] creating Manojirimycin (MJ). Epimerization of MJ at the C2 position yields the nojirimycin isomer. Nojirimycin is then dehydrated (loss of -OH at C1 position), along with reduction of the imine moiety. [9] This results in the product 1-DNJ. [8]

Biosynthesis of 1-deoxynojirimycin in Bacillus subtilis Biosynthesis of 1-deoxynojirimycin in Bacillus Subtilis.gif
Biosynthesis of 1-deoxynojirimycin in Bacillus subtilis

Pathway variations

In the Streptomyces subrutilus species, a secondary pathway branching from the manojirimycin precursor results in 1-deoxymanojirimycin via dehydration and reduction of the isomer. However, Bacillus subtilis does not produce 1-deoxymanojirimycin despite the presence of the manojirimycin precursor. [4]

Azasugar biosynthesis in Commelina communis involves C1-C5 cyclisation of the original D-glucose precursor without the subsequent inversion. [4] [9]

See also

Related Research Articles

<i>Bacillus</i> Genus of bacteria

Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.

Autolysins are endogenous lytic enzymes that break down the peptidoglycan components of biological cells which enables the separation of daughter cells following cell division. They are involved in cell growth, cell wall metabolism, cell division and separation, as well as peptidoglycan turnover and have similar functions to lysozymes.

<span class="mw-page-title-main">Fructose 1,6-bisphosphatase</span> Class of enzymes

The enzyme fructose bisphosphatase (EC 3.1.3.11; systematic name D-fructose-1,6-bisphosphate 1-phosphohydrolase) catalyses the conversion of fructose-1,6-bisphosphate to fructose 6-phosphate in gluconeogenesis and the Calvin cycle, which are both anabolic pathways:

<i>Bacillus subtilis</i> Catalase-positive bacterium

Bacillus subtilis, known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus Bacillus, B. subtilis is rod-shaped, and can form a tough, protective endospore, allowing it to tolerate extreme environmental conditions. B. subtilis has historically been classified as an obligate aerobe, though evidence exists that it is a facultative anaerobe. B. subtilis is considered the best studied Gram-positive bacterium and a model organism to study bacterial chromosome replication and cell differentiation. It is one of the bacterial champions in secreted enzyme production and used on an industrial scale by biotechnology companies.

<span class="mw-page-title-main">Acarbose</span> Chemical compound

Acarbose (INN) is an anti-diabetic drug used to treat diabetes mellitus type 2 and, in some countries, prediabetes. It is a generic sold in Europe and China as Glucobay, in North America as Precose, and in Canada as Prandase.

<span class="mw-page-title-main">RecA</span> DNA repair protein

RecA is a 38 kilodalton protein essential for the repair and maintenance of DNA. A RecA structural and functional homolog has been found in every species in which one has been seriously sought and serves as an archetype for this class of homologous DNA repair proteins. The homologous protein is called RAD51 in eukaryotes and RadA in archaea.

<span class="mw-page-title-main">Glucose-6-phosphate isomerase</span> Mammalian protein found in Homo sapiens

Glucose-6-phosphate isomerase (GPI), alternatively known as phosphoglucose isomerase/phosphoglucoisomerase (PGI) or phosphohexose isomerase (PHI), is an enzyme that in humans is encoded by the GPI gene on chromosome 19. This gene encodes a member of the glucose phosphate isomerase protein family. The encoded protein has been identified as a moonlighting protein based on its ability to perform mechanistically distinct functions. In the cytoplasm, the gene product functions as a glycolytic enzyme that interconverts glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P). Extracellularly, the encoded protein functions as a neurotrophic factor that promotes survival of skeletal motor neurons and sensory neurons, and as a lymphokine that induces immunoglobulin secretion. The encoded protein is also referred to as autocrine motility factor (AMF) based on an additional function as a tumor-secreted cytokine and angiogenic factor. Defects in this gene are the cause of nonspherocytic hemolytic anemia, and a severe enzyme deficiency can be associated with hydrops fetalis, immediate neonatal death and neurological impairment. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

<i>p</i>-Coumaric acid Chemical compound

p-Coumaric acid is an organic compound with the formula HOC6H4CH=CHCO2H. It is one of the three isomers of hydroxycinnamic acid. It is a white solid that is only slightly soluble in water but very soluble in ethanol and diethyl ether.

<i>trp</i> operon Operon that codes for the components for production of tryptophan

The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.

Alpha-glucosidase inhibitors (AGIs) are oral anti-diabetic drugs used for diabetes mellitus type 2 that work by preventing the digestion of carbohydrates. Carbohydrates are normally converted into simple sugars (monosaccharides) by alpha-glucosidase enzymes present on cells lining the intestine, enabling monosaccharides to be absorbed through the intestine. Hence, alpha-glucosidase inhibitors reduce the impact of dietary carbohydrates on blood sugar.

α-Glucosidase Enzyme

α-Glucosidase (EC 3.2.1.20, is a glucosidase located in the brush border of the small intestine that acts upon α bonds:

The enzyme cyclomaltodextrinase (EC 3.2.1.54) catalyzes the chemical reaction

<span class="mw-page-title-main">GOT2</span> Mitochondrial enzyme involved in amino acid metabolism

Aspartate aminotransferase, mitochondrial is an enzyme that in humans is encoded by the GOT2 gene. Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and inner-membrane mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and Kreb's cycle. Also, GOT2 is a major participant in the malate-aspartate shuttle, which is a passage from the cytosol to the mitochondria. The two enzymes are homodimeric and show close homology. GOT2 has been seen to have a role in cell proliferation, especially in terms of tumor growth.

In a screen of the Bacillus subtilis genome for genes encoding ncRNAs, Saito et al. focused on 123 intergenic regions (IGRs) over 500 base pairs in length, the authors analyzed expression from these regions. Seven IGRs termed bsrC, bsrD, bsrE, bsrF, bsrG, bsrH and bsrI expressed RNAs smaller than 380 nt. All the small RNAs except BsrD RNA were expressed in transformed Escherichia coli cells harboring a plasmid with PCR-amplified IGRs of B. subtilis, indicating that their own promoters independently express small RNAs. Under non-stressed condition, depletion of the genes for the small RNAs did not affect growth. Although their functions are unknown, gene expression profiles at several time points showed that most of the genes except for bsrD were expressed during the vegetative phase, but undetectable during the stationary phase. Mapping the 5' ends of the 6 small RNAs revealed that the genes for BsrE, BsrF, BsrG, BsrH, and BsrI RNAs are preceded by a recognition site for RNA polymerase sigma factor σA.

<i>Rhus chinensis</i> Species of tree

Rhus chinensis, the Chinese sumac or nutgall tree, is a deciduous shrub or small tree in the genus Rhus. Growing to 6 m (20 ft) tall, it has downy shoots and leaves comprising several leaflets. These turn red in autumn before falling.

The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other hormones.

In molecular biology, the SR1 RNA is a small RNA (sRNA) produced by species of Bacillus and closely related bacteria. It is a dual-function RNA which acts both as a protein-coding RNA and as a regulatory sRNA.

<span class="mw-page-title-main">Iminosugar</span> Class of chemical compounds

An iminosugar, also known as an iminosaccharide, is any analog of a sugar where a nitrogen atom has replaced the oxygen atom in the ring of the structure.

The Bacillus subtilis φ29 Holin Family is a group of transporters belonging to the Holin Superfamily IV. A representative list of members belonging to the φ29 holin family can be found in the Transporter Classification Database.

References

  1. KEGG: Deoxynojirimycin.
  2. Chaluntorn Vichasilp; et al. (2012). "Development of high 1-deoxynojirimycin (DNJ) content mulberry tea and use of response surface methodology to optimize tea-making conditions for highest DNJ extraction". LWT - Food Science and Technology. 45 (2): 226–232. doi:10.1016/j.lwt.2011.09.008.
  3. Onose, S; Ikeda, R; Nakagawa, K; Kimura, T; Yamagishi, K; Higuchi, O; Miyazawa, T (2013). "Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species". Food Chemistry. 138 (1): 516–23. doi:10.1016/j.foodchem.2012.11.012. PMID   23265519.
  4. 1 2 3 Gomollon-Bel, Fernando; Delso, Ignacio; Tejero, Tomas; Merino, Pedro (2014-11-12). "Biosynthetic Pathways to Glycosidase Inhibitors". Current Chemical Biology. 8 (1): 10–16. doi:10.2174/221279680801141112094818. hdl: 10261/122571 . ISSN   2212-7968.
  5. Kang, Kyung-Don; Cho, Yong Seok; Song, Ji Hye; Park, Young Shik; Lee, Jae Yeon; Hwang, Kyo Yeol; Rhee, Sang Ki; Chung, Ji Hyung; Kwon, Ohsuk (June 2011). "Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85". The Journal of Microbiology. 49 (3): 431–440. doi:10.1007/s12275-011-1238-3. ISSN   1225-8873. PMID   21717329. S2CID   24841974.
  6. Kang, Kyung-Don; Cho, Yong Seok; Song, Ji Hye; Park, Young Shik; Lee, Jae Yeon; Hwang, Kyo Yeol; Rhee, Sang Ki; Chung, Ji Hyung; Kwon, Ohsuk (June 2011). "Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85". The Journal of Microbiology. 49 (3): 431–440. doi:10.1007/s12275-011-1238-3. ISSN   1225-8873. PMID   21717329. S2CID   24841974.
  7. 1 2 3 Clark, Lorraine F.; Johnson, Jodie V.; Horenstein, Nicole A. (2011-07-22). "Identification of a Gene Cluster that Initiates Azasugar Biosynthesis in Bacillus amyloliquefaciens". ChemBioChem. 12 (14): 2147–2150. doi:10.1002/cbic.201100347. ISSN   1439-4227. PMID   21786380. S2CID   32186936.
  8. 1 2 3 Jiang, Peixia; Mu, Shanshan; Li, Heng; Li, Youhai; Feng, Congmin; Jin, Jian-Ming; Tang, Shuang-Yan (2015-02-24). "Design and Application of a Novel High-throughput Screening Technique for 1-Deoxynojirimycin". Scientific Reports. 5 (1): 8563. Bibcode:2015NatSR...5E8563J. doi:10.1038/srep08563. ISSN   2045-2322. PMC   4338435 . PMID   25708517.
  9. 1 2 3 Onose, Shinji; Ikeda, Ryoichi; Nakagawa, Kiyotaka; Kimura, Toshiyuki; Yamagishi, Kenji; Higuchi, Ohki; Miyazawa, Teruo (May 2013). "Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species". Food Chemistry. 138 (1): 516–523. doi:10.1016/j.foodchem.2012.11.012. ISSN   0308-8146. PMID   23265519.