13q deletion syndrome

Last updated
13q deletion syndrome
Autosomal dominant - en.svg
13q deletion syndrome is inherited in an autosomal dominant manner

13q deletion syndrome is a rare genetic disease caused by the deletion of some or all of the large arm of human chromosome 13. Depending upon the size and location of the deletion on chromosome 13, the physical and mental manifestations will vary. It has the potential to cause intellectual disability and congenital malformations that affect a variety of organ systems. Because of the rarity of the disease in addition to the variations in the disease, the specific genes that cause this disease are unknown. [1] This disease is also known as:

Contents

Signs and symptoms

Variations of the signs and symptoms occur depending upon the area of chromosome 13 that is deleted. Deletions from the centromere to 13q32 or any deletions including the 13q32 band are associated with slow growth, intellectual disability, and congenital malformations. Deletions from 13q33 to the end of the chromosome are associated with intellectual disability. Intellectual disabilities range from very mild to very severe, and can co-occur with behavioral disorders and/or autism spectrum disorders. [3]

At birth, the main symptoms include low weight (due to intrauterine growth restriction), hypotonia, and feeding difficulties. Infants may also have cleft palate. [3]

13q deletion syndrome gives a characteristic appearance to affected individuals, potentially including microphthalmia (small eyes), hypertelorism (wide-set eyes), thin forehead, high palate, underdeveloped midface, small mouth, small nose, broad, flat nasal bridge, short neck, low hairline, irregular or wrongly positioned teeth, low-set ears, micrognathia (small jaw), tooth enamel defects, short stature, microcephaly (small head), a prominent, long philtrum, and earlobes turned inwards. [3] [4]

Congenital heart disease is also associated with 13q deletion syndrome. Common defects include atrial septal defect, tetralogy of Fallot, ventricular septal defect, patent ductus arteriosus, pulmonary stenosis, and coarctation of the aorta. Defects of the endocrine system, digestive system, and genitourinary system are also common. These include underdevelopment or agenesis of the pancreas, adrenal glands, thymus, gallbladder, and thyroid; Hirschsprung's disease; gastric reflux, imperforate anus, retention testis, ectopic kidney, renal agenesis, and hydronephrosis. [3]

A variety of brain abnormalities are also associated with 13q deletion. They can include epilepsy, craniosynostosis (premature closing of the skull bones), spastic diplegia, cerebral hypotrophy, underdevelopment or agenesis of the corpus callosum, cerebellar hypoplasia, deafness, and, rarely, hydrocephalus, Dandy–Walker syndrome, and spina bifida. The eyes can be severely damaged and affected individuals may be blind. They may also have coloboma of the iris or choroid, strabismus, nystagmus, glaucoma, or cataracts. [3]

Other skeletal malformations are found with 13q deletion syndrome, including syndactyly, clubfoot, clinodactyly, and malformations of the vertebrae and/or thumbs. [3]

Deletions that include the 13q32 band, which contains the brain development gene ZIC2, are associated with holoprosencephaly; they are also associated with hand and foot malformations. Deletions that include the 13q14 band, which contains the tumor suppressor gene Rb, are associated with a higher risk of developing retinoblastoma, which is more common in XY children. Deletion of the 13q33.3 band is associated with hypospadias. [3] Other genes in the potentially affected region include NUFIP1, HTR2A, PDCH8, and PCDH17. [4]

In males with 13q deletion syndrome, genital abnormalities are common. The meatus, or urinary opening, may appear on the underside of the penis (hypospadis), and/or the testes will not descend into the scrotum (cryptochidism). The scrotum will often be unusually small or abnormally divided into two sections (bifid scrotum); the penis may be unusually small (micropenis), and/or abnormal passage may be present between the scrotum and the anus (perineal fistula). In rare cases, the anal opening may be absent or covered by a thing membrane which can cause obstruction (anal atresia). [2]

Causes

Although one can inherit 13q deletion syndrome, the most common way to obtain the disease is through genetic mutations. All human chromosomes have 2 arms, the p (short) arm and the q (long) arm. They are separated from each other only by a primary constriction, the centromere, the point at which the chromosome is attached to the spindle during cell division. [5]

Mechanism

This disorder is caused by the deletion of the long arm of chromosome 13, which can either be deleted linearly or as a ring chromosome. It is typically not hereditary— the loss of a portion of the chromosome typically occurs during gametogenesis, making it a de novo mutation. When it is hereditary, it is usually caused by a parent having mosaicism or a balanced translocation. [3] The severity of the disorder is correlated with the size of the deletion, with larger deletions causing more severe manifestations. [3] There are three common anomalies predominately observed in 13q deletion syndrome: congenital heart disease, anorectal/genitourinary, and gastrointestinal tract malformations. These are all part of the VACTERL associations which is a disorder that is characterized by vertebral anomalies, anal atresia, cardiac defect, tracheoesphageal fistula, renal anomalies, and limb defects. [1]

Diagnosis

13q deletion syndrome can only be definitively diagnosed by genetic analysis, which can be done prenatally or after birth. [3] Family and medical history is important when diagnosing a child with 13q deletion syndrome. Chromosome testing of both parents can provide more information on whether or not the deletion was inherited. [2] Increased nuchal translucency in a first-trimester ultrasound may indicate the presence of 13q deletion. [6] It is important to follow through with genetic testing because there are many other diseases that have similar clinical manifestations of 13q deletion syndrome. [2]

Treatment

Although there is no cure for 13q deletion syndrome, symptoms can be managed, usually with the involvement of a neurologist, rehabilitation physician, occupational therapist, physiotherapist, psychotherapist, nutritionist, special education professional, and/or speech therapist. No treatment for 13q deletion syndrome will ever be identical due to the variations in the disease which is why the use of personalized teams with members from different medical fields is vital to the patient. If the affected child's growth is particularly slow, growth hormone treatment can be used to augment growth. Plastic surgeries can repair cleft palates, and surgical repair or monitoring by a pediatric cardiologist can manage cardiac defects. Some skeletal, neurological, genitourinary, gastrointestinal, and ophthalmic abnormalities can be definitively treated with surgery. Endocrine abnormalities can often be managed medically. Even if a child is responding to well to their medical treatment, it is important to utilize special educators, speech and occupational therapists, and physiotherapists to help the child develop skills that will aid in their life in and out of the classroom. [3]

Prognosis

Affected individuals may have a somewhat shortened lifespan without treatment. The maximum lifespan without treatment is 67 years. When a 13q deletion is detected, such as in a bone marrow biopsy for Multiple Myeloma, chemo treatments in recent years have the ability to extend life expectancy without limitations depending on response to treatments. It is not uncommon for adults with 13q deletion syndrome to need support services to maintain their activities of daily living, including adult day care services or housing services. [3]

Epidemiology

It is incredibly rare, with fewer than 190 cases described. [3] Although rare, deletions involving chromosome 13q are among the most commonly observed monosomies [2] Chromosome 13, Partial Monosomy 13q appears to affect females slightly more frequently than males. Since the disorder was originally reported in 1963, more than 125 cases have been recorded in the medical literature. [2] The age of onset can vary from patient to patient because of the differences in deletions. For example, a study was able to demonstrate for the first time that a patient with a hemangioendothelioma of the liver with a simultaneous deletion in chromosome 13q of 28Mb did not develop Rb until the age of 3 years [7] while other patients with similar deletions have immediate clinical manifestations upon birth.

History

13q deletion syndrome was first described in 1963 and fully characterized in 1971. [3]

Related Research Articles

<span class="mw-page-title-main">Prune belly syndrome</span> Medical condition

Prune belly syndrome is a rare, genetic birth defect affecting about 1 in 40,000 births. About 97% of those affected are male. Prune belly syndrome is a congenital disorder of the urinary system, characterized by a triad of symptoms. The syndrome is named for the mass of wrinkled skin that is often present on the abdomen of those with the disorder.

Miller–Dieker syndrome, Miller–Dieker lissencephaly syndrome (MDLS), and chromosome 17p13.3 deletion syndrome is a micro deletion syndrome characterized by congenital malformations. Congenital malformations are physical defects detectable in an infant at birth which can involve many different parts of the body including the brain, hearts, lungs, liver, bones, or intestinal tract. MDS is a contiguous gene syndrome – a disorder due to the deletion of multiple gene loci adjacent to one another. The disorder arises from the deletion of part of the small arm of chromosome 17p, leading to partial monosomy. There may be unbalanced translocations, or the presence of a ring chromosome 17.

<span class="mw-page-title-main">Cri du chat syndrome</span> Human medical condition

Cri du chat syndrome is a rare genetic disorder due to a partial chromosome deletion on chromosome 5. Its name is a French term referring to the characteristic cat-like cry of affected children. It was first described by Jérôme Lejeune in 1963. The condition affects an estimated 1 in 50,000 live births across all ethnicities and is more common in females by a 4:3 ratio.

Jacobsen syndrome is a rare chromosomal disorder resulting from deletion of genes from chromosome 11 that includes band 11q24.1. It is a congenital disorder. Since the deletion takes place on the q arm of chromosome 11, it is also called 11q terminal deletion disorder. The deletion may range from 5 million to 16 million deleted DNA base pairs. The severity of symptoms depends on the number of deletions; the more deletions there are, the more severe the symptoms are likely to be.

Agenesis of the corpus callosum (ACC) is a rare birth defect in which there is a complete or partial absence of the corpus callosum. It occurs when the development of the corpus callosum, the band of white matter connecting the two hemispheres in the brain, in the embryo is disrupted. The result of this is that the fibers that would otherwise form the corpus callosum are instead longitudinally oriented along the ipsilateral ventricular wall and form structures called Probst bundles.

Trisomy 8 causes Warkany syndrome 2, a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.

<span class="mw-page-title-main">Chromosome 13</span> Human chromosome

Chromosome 13 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 13 spans about 113 million base pairs and represents between 3.5 and 4% of the total DNA in cells.

Aplasia is a birth defect where an organ or tissue is wholly or largely absent. It is caused by a defect in a developmental process.

Monosomy 9p is a rare chromosomal disorder in which some DNA is missing or has been deleted on the short arm region, "p", of one copy of chromosome 9 (9p22.2-p23). This deletion either happens de novo or as a result of a parent having the chromosome abnormality. This rare chromosomal abnormality is often diagnosed after birth when developmental delay, irregular facial features, structural irregularities within the heart, and genital defects are observed. Treatments for this syndrome usually focus on fixing the malformations that are commonly associated with it. The cause of the syndrome was first discovered in 1973, when an analysis of the chromosomes of three infants with similar clinical abnormalities revealed that they all had a partial deletion of the short arm of Chromosome 9. Symptoms include micro genitalia, intellectual disability with microcephaly and dysmorphic features.

<span class="mw-page-title-main">1p36 deletion syndrome</span> Medical condition

1p36 deletion syndrome is a congenital genetic disorder characterized by moderate to severe intellectual disability, delayed growth, hypotonia, seizures, limited speech ability, malformations, hearing and vision impairment, and distinct facial features. The symptoms may vary, depending on the exact location of the chromosomal deletion.

<span class="mw-page-title-main">Ring chromosome 20 syndrome</span> Medical condition

Ring chromosome 20, ring-shaped chromosome 20 or r(20) syndrome is a rare human chromosome abnormality where the two arms of chromosome 20 fuse to form a ring chromosome. The syndrome is associated with epileptic seizures, behaviour disorders and intellectual disability.

<span class="mw-page-title-main">Young–Simpson syndrome</span> Medical condition

Young–Simpson syndrome (YSS) is a rare congenital disorder with symptoms including hypothyroidism, heart defects, facial dysmorphism, cryptorchidism in males, hypotonia, intellectual disability, and postnatal growth retardation.

<span class="mw-page-title-main">Partial monosomy 13q</span> Medical condition

Partial monosomy of chromosome 13q is a monosomy that results from the loss of all or part of the long arm of chromosome 13 in human beings. It is a rare genetic disorder which results in severe congenital abnormalities which are frequently fatal at an early age. Up until 2003, more than 125 cases had been documented in medical literature.

<span class="mw-page-title-main">18p-</span> Deletion of the short arm of chromosome 18

18p-, also known as monosomy 18p, deletion 18p syndrome, del(18p) syndrome, partial monosomy 18p, or de Grouchy syndrome 1, is a genetic condition caused by a deletion of all or part of the short arm of chromosome 18. It occurs in about 1 of every 50,000 births.

<span class="mw-page-title-main">Renal cysts and diabetes syndrome</span> Medical condition

Renal cysts and diabetes syndrome (RCAD), also known as MODY 5 or HNF1B-MODY, is a form of maturity onset diabetes of the young.

<span class="mw-page-title-main">Roberts syndrome</span> Medical condition

Roberts syndrome, or sometimes called pseudothalidomide syndrome, is an extremely rare autosomal recessive genetic disorder that is characterized by mild to severe prenatal retardation or disruption of cell division, leading to malformation of the bones in the skull, face, arms, and legs.

Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting, a caudal appendage, growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Georges Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the COLLEC11 and MASP1 genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.

Opitz G/BBB syndrome, also known as Opitz syndrome, G syndrome or BBB syndrome, is a rare genetic disorder that will affect physical structures along the midline of the body. The letters G and BBB represent the last names of the families that were first diagnosed with the disorder, while Opitz is the last name of the doctor that first described the signs and symptoms of the disease. There are two different forms of Optiz G/BBB syndrome: x-linked (recessive) syndrome and dominant autosomal syndrome. However, both result in common physical deformities, although their pattern of inheritance may differ. Several other names for the disease(s) are no longer used. These include hypospadias-dysphagia syndrome, Opitz-Frias syndrome, telecanthus with associated abnormalities, and hypertelorism-hypospadias syndrome.

Fryns-Aftimos syndrome is a rare chromosomal condition and is associated with pachygyria, severe mental retardation, epilepsy and characteristic facial features. This syndrome is a malformation syndrome, characterized by numerous facial dysmorphias not limited to hypertelorism, iris or retinal coloboma, cleft lip, and congenital heart defects. This syndrome has been seen in 30 unrelated people. Characterized by a de novo mutation located on chromosome 7p22, there is typically no family history prior to onset. The severity of the disorder can be determined by the size of the deletion on 7p22, enveloping the ACTB gene and surrounding genes, which is consistent with a contiguous gene deletion syndrome. Confirming a diagnosis of Fryns-Aftimos syndrome typically consists of serial single-gene testing or multigene panel of genes of interest or exome sequencing.

References

  1. 1 2 Wang, Y. P.; Wang, D. J.; Niu, Z. B.; Cui, W. T. (2017). "Chromosome 13q deletion syndrome involving 13q31-qter: A case report". Molecular Medicine Reports. 15 (6): 3658–3664. doi:10.3892/mmr.2017.6425. PMC   5436299 . PMID   28393221.
  2. 1 2 3 4 5 6 "Chromosome 13, Partial Monosomy 13q". www.rarediseases.org. Retrieved 2015-07-22.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "13q deletion syndrome". www.socialstyrelsen.se. Archived from the original on 2019-04-08. Retrieved 2019-11-28.
  4. 1 2 "OMIM Entry - # 613884 - CHROMOSOME 13q14 DELETION SYNDROME". www.omim.org. Retrieved 2019-10-08.
  5. "Medical Definition Of Long Arm Of A Chromosome". www.medicinenet.com/script/main/hp.asp. Archived from the original on 2020-06-21. Retrieved 2019-11-28.
  6. Manolakos, E.; Peitsidis, P.; Garas, A.; Vetro, A.; Eleftheriades, M.; Petersen, M. B.; Papoulidis, I. (2012-01-01). "First trimester diagnosis of 13q-syndrome associated with increased fetal nuchal translucency thickness. Clinical findings and systematic review". Clinical and Experimental Obstetrics & Gynecology. 39 (1): 118–121. ISSN   0390-6663. PMID   22675970.
  7. Rapini, Novella; Lidano, Roberta (2014). "De Novo 13q13.3-21.31 deletion involving RB1 gene in a patient with hemangioendothelioma of the liver". Italian Journal of Pediatrics. 40 (4): 5. doi: 10.1186/1824-7288-40-5 . PMC   3896849 . PMID   24433316.