1659 in science

Last updated

List of years in science (table)
+...

The year 1659 in science and technology involved some significant events.

Contents

Astronomy

Mathematics

Medicine

Physics

Births

Deaths

Related Research Articles

<span class="mw-page-title-main">History of physics</span> Historical development of physics

Physics is a branch of science in which the primary objects of study are matter and energy. These topics were discussed by philosophers across many cultures in ancient times, but they had no means to distinguish causes of natural phenomena from superstitions. The scientific revolution of the 17th century, especially the discovery of the law of gravity, began a process knowledge accumulation and specialization that gave rise to the field of physics. Mathematical advances of the 18th century gave rise to classical mechanics and the increased used of the experimental method lead new understanding of thermodynamics. In the 19th century, the basic laws of electromagnetism and statistical mechanics were discovered. Physics was transformed by the discoveries of quantum mechanics, relativity, and atomic theory at the beginning of the 20th century. Physics today may be divided loosely into classical physics and modern physics.

<span class="mw-page-title-main">Magic lantern</span> Type of image projector

The magic lantern, also known by its Latin name lanterna magica, was an early type of image projector that used pictures—paintings, prints, or photographs—on transparent plates, one or more lenses, and a light source. Because a single lens inverts an image projected through it, slides were inserted upside down in the magic lantern, rendering the projected image correctly oriented.

<span class="mw-page-title-main">Christiaan Huygens</span> Dutch mathematician and physicist (1629–1695)

Christiaan Huygens, Lord of Zeelhem, was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution. In physics, Huygens made seminal contributions to optics and mechanics, while as an astronomer he studied the rings of Saturn and discovered its largest moon, Titan. As an engineer and inventor, he improved the design of telescopes and invented the pendulum clock, the most accurate timekeeper for almost 300 years. A talented mathematician and physicist, his works contain the first idealization of a physical problem by a set of mathematical parameters, and the first mathematical and mechanistic explanation of an unobservable physical phenomenon.

<span class="mw-page-title-main">Frans van Schooten</span> Dutch mathematician (1615–1660)

Frans van Schooten Jr. also rendered as Franciscus van Schooten was a Dutch mathematician who is most known for popularizing the analytic geometry of René Descartes.

<span class="mw-page-title-main">Constantijn Huygens</span> Dutch poet and statesman (1596–1687)

Sir Constantijn Huygens, Lord of Zuilichem, was a Dutch Golden Age poet and composer. He was also secretary to two Princes of Orange: Frederick Henry and William II, and the father of the scientist Christiaan Huygens.

The year 1656 in science and technology involved some significant events.

The year 1673 in science and technology involved some significant events.

The year 1657 in science and technology involved some significant events.

The year 1655 in science and technology involved some significant events.

<span class="mw-page-title-main">Nicolas Fatio de Duillier</span> Mathematician, natural philosopher and astronomer (1664–1753)

Nicolas Fatio de Duillier was a mathematician, natural philosopher, astronomer, inventor, and religious campaigner. Born in Basel, Switzerland, Fatio mostly grew up in the then-independent Republic of Geneva, of which he was a citizen, before spending much of his adult life in England and Holland. Fatio is known for his collaboration with Giovanni Domenico Cassini on the correct explanation of the astronomical phenomenon of zodiacal light, for inventing the "push" or "shadow" theory of gravitation, for his close association with both Christiaan Huygens and Isaac Newton, and for his role in the Leibniz–Newton calculus controversy. He also invented and developed the first method for fabricating jewel bearings for mechanical watches and clocks.

<span class="mw-page-title-main">Johannes Hudde</span>

JohannesHudde was a burgomaster (mayor) of Amsterdam between 1672 – 1703, a mathematician and governor of the Dutch East India Company.

<span class="mw-page-title-main">Nicholas Mercator</span> German mathematician (c.1620 – 1687)

Nicholas (Nikolaus) Mercator, also known by his German name Kauffmann, was a 17th-century mathematician.

In mathematics, particularly in geometry, quadrature is a historical process of drawing a square with the same area as a given plane figure or computing the numerical value of that area. A classical example is the quadrature of the circle . Quadrature problems served as one of the main sources of problems in the development of calculus. They introduce important topics in mathematical analysis.

<span class="mw-page-title-main">Grégoire de Saint-Vincent</span> Belgian Jesuit and mathematician (1584–1667)

Grégoire de Saint-Vincent - in Latin : Gregorius a Sancto Vincentio, in Dutch : Gregorius van St-Vincent - was a Flemish Jesuit and mathematician. He is remembered for his work on quadrature of the hyperbola.

The phrase temperament ordinaire is a term for musical intonation, particularly the tempered tuning of keyboard instruments. In modern usage, it usually refers to temperaments falling within the range of tunings now known as "well-tempered".

<i>Ars Conjectandi</i> 1713 book on probability and combinatorics by Jacob Bernoulli

Ars Conjectandi is a book on combinatorics and mathematical probability written by Jacob Bernoulli and published in 1713, eight years after his death, by his nephew, Niklaus Bernoulli. The seminal work consolidated, apart from many combinatorial topics, many central ideas in probability theory, such as the very first version of the law of large numbers: indeed, it is widely regarded as the founding work of that subject. It also addressed problems that today are classified in the twelvefold way and added to the subjects; consequently, it has been dubbed an important historical landmark in not only probability but all combinatorics by a plethora of mathematical historians. The importance of this early work had a large impact on both contemporary and later mathematicians; for example, Abraham de Moivre.

<span class="mw-page-title-main">Constantijn Huygens Jr.</span> Dutch statesman and polymath (1628–1697)

Constantijn Huygens Jr., Lord of Zuilichem, was a Dutch statesman and poet, mostly known for his work on scientific instruments. But, he was also a chronicler of his times, revealing the importance of gossip. Additionally, he was an amateur draughtsman of landscapes.

Probability has a dual aspect: on the one hand the likelihood of hypotheses given the evidence for them, and on the other hand the behavior of stochastic processes such as the throwing of dice or coins. The study of the former is historically older in, for example, the law of evidence, while the mathematical treatment of dice began with the work of Cardano, Pascal, Fermat and Christiaan Huygens between the 16th and 17th century.

<i>Horologium Oscillatorium</i> 1673 book on pendular motion by Christiaan Huygens

Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae is a book published by Dutch mathematician and physicist Christiaan Huygens in 1673 and his major work on pendula and horology. It is regarded as one of the three most important works on mechanics in the 17th century, the other two being Galileo’s Discourses and Mathematical Demonstrations Relating to Two New Sciences (1638) and Newton’s Philosophiæ Naturalis Principia Mathematica (1687).

<i>Treatise on Light</i> Book by Christiaan Huygens

Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690. The book describes Huygens's conception of the nature of light propagation which makes it possible to explain the laws of geometrical optics shown in Descartes's Dioptrique, which Huygens aimed to replace.

References

  1. According to Moritz Cantor. "Earliest Known Uses of Some of the Words of Mathematics (A)". Jeff Miller Web Pages. 2010-11-14. Retrieved 2011-04-24.