16p11.2 duplication syndrome

Last updated
16p11.2 duplication syndrome
Autosomal dominant - en.svg
The inheritance pattern of 16p11.2 duplications is autosomal dominant.
Specialty Medical genetics

16p11.2 duplication syndrome is a genetic condition caused by duplication of region on chromosome 16. The odds of developing autism spectrum disorder are elevated and comparable to the rate with 16p11.2 deletion. The rate of having ADHD is higher than in people with deletion. [1] [2]

Research

Researchers at Northwestern University created a mouse model of the syndrome. [3]

Related Research Articles

<span class="mw-page-title-main">Microcephaly</span> Condition in which the head is small due to an underdeveloped brain

Microcephaly is a medical condition involving a smaller-than-normal head. Microcephaly may be present at birth or it may develop in the first few years of life. Brain development is often affected; people with this disorder often have an intellectual disability, poor motor function, poor speech, abnormal facial features, seizures and dwarfism.

<span class="mw-page-title-main">Deletion (genetics)</span> Mutation that removes a part of a DNA sequence

In genetics, a deletion is a mutation in which a part of a chromosome or a sequence of DNA is left out during DNA replication. Any number of nucleotides can be deleted, from a single base to an entire piece of chromosome. Some chromosomes have fragile spots where breaks occur, which result in the deletion of a part of the chromosome. The breaks can be induced by heat, viruses, radiation, or chemical reactions. When a chromosome breaks, if a part of it is deleted or lost, the missing piece of chromosome is referred to as a deletion or a deficiency.

Gene duplication is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene. Gene duplications can arise as products of several types of errors in DNA replication and repair machinery as well as through fortuitous capture by selfish genetic elements. Common sources of gene duplications include ectopic recombination, retrotransposition event, aneuploidy, polyploidy, and replication slippage.

<span class="mw-page-title-main">Haploinsufficiency</span> Concept in genetics

Haploinsufficiency in genetics describes a model of dominant gene action in diploid organisms, in which a single copy of the wild-type allele at a locus in heterozygous combination with a variant allele is insufficient to produce the wild-type phenotype. Haploinsufficiency may arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it yields little or no gene product. Although the other, standard allele still produces the standard amount of product, the total product is insufficient to produce the standard phenotype. This heterozygous genotype may result in a non- or sub-standard, deleterious, and (or) disease phenotype. Haploinsufficiency is the standard explanation for dominant deleterious alleles.

Smith–Magenis syndrome (SMS), also known as 17p- syndrome, is a microdeletion syndrome characterized by an abnormality in the short (p) arm of chromosome 17. It has features including intellectual disability, facial abnormalities, difficulty sleeping, and numerous behavioral problems such as self-harm. Smith–Magenis syndrome affects an estimated between 1 in 15,000 to 1 in 25,000 individuals.

<span class="mw-page-title-main">Heritability of autism</span>

The heritability of autism is the proportion of differences in expression of autism that can be explained by genetic variation; if the heritability of a condition is high, then the condition is considered to be primarily genetic. Autism has a strong genetic basis. Although the genetics of autism are complex, autism spectrum disorder (ASD) is explained more by multigene effects than by rare mutations with large effects.

A de novo mutation (DNM) is any mutation or alteration in the genome of an individual organism that was not inherited from its parents. This type of mutation spontaneously occurs during the process of DNA replication during cell division. De novo mutations, by definition, are present in the affected individual but absent from both biological parents' genomes. These mutations can occur in any cell of the offspring, but those in the germ line can be passed on to the next generation.

<span class="mw-page-title-main">22q13 deletion syndrome</span> Rare genetic syndrome

22q13 deletion syndrome, also known as Phelan–McDermid syndrome (PMS), is a genetic disorder caused by deletions or rearrangements on the q terminal end of chromosome 22. Any abnormal genetic variation in the q13 region that presents with significant manifestations (phenotype) typical of a terminal deletion may be diagnosed as 22q13 deletion syndrome. There is disagreement among researchers as to the exact definition of 22q13 deletion syndrome. The Developmental Synaptopathies Consortium defines PMS as being caused by SHANK3 mutations, a definition that appears to exclude terminal deletions. The requirement to include SHANK3 in the definition is supported by many but not by those who first described 22q13 deletion syndrome.

<span class="mw-page-title-main">Lujan–Fryns syndrome</span> Medical condition

Lujan–Fryns syndrome (LFS) is an X-linked genetic disorder that causes mild to moderate intellectual disability and features described as Marfanoid habitus, referring to a group of physical characteristics similar to those found in Marfan syndrome. These features include a tall, thin stature and long, slender limbs. LFS is also associated with psychopathology and behavioral abnormalities, and it exhibits a number of malformations affecting the brain and heart. The disorder is inherited in an X-linked dominant manner, and is attributed to a missense mutation in the MED12 gene. There is currently no treatment or therapy for the underlying MED12 malfunction, and the exact cause of the disorder remains unclear.

Potocki–Lupski syndrome (PTLS), also known as dup(17)p11.2p11.2 syndrome, trisomy 17p11.2 or duplication 17p11.2 syndrome, is a contiguous gene syndrome involving the microduplication of band 11.2 on the short arm of human chromosome 17 (17p11.2). The duplication was first described as a case study in 1996. In 2000, the first study of the disease was released, and in 2007, enough patients had been gathered to complete a comprehensive study and give it a detailed clinical description. PTLS is named for two researchers involved in the latter phases, Drs. Lorraine Potocki and James R. Lupski of Baylor College of Medicine.

<span class="mw-page-title-main">Koolen–De Vries syndrome</span> Rare genetic disorder caused by a deletion of six genes

Koolen–De Vries syndrome (KdVS), also known as 17q21.31 microdeletion syndrome, is a rare genetic disorder caused by a deletion of a segment of chromosome 17 which contains six genes. This deletion syndrome was discovered independently in 2006 by three different research groups.

Non-allelic homologous recombination (NAHR) is a form of homologous recombination that occurs between two lengths of DNA that have high sequence similarity, but are not alleles.

1q21.1 deletion syndrome is a rare aberration of chromosome 1. A human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 deletion syndrome, one chromosome of the pair is not complete, because a part of the sequence of the chromosome is missing. One chromosome has the normal length and the other is too short.

<span class="mw-page-title-main">Animal model of schizophrenia</span>

Research into the mental disorder of schizophrenia, involves multiple animal models as a tool, including in the preclinical stage of drug development.

Autism spectrum disorder (ASD) refers to a variety of conditions typically identified by challenges with social skills, communication, speech, and repetitive sensory-motor behaviors. The 11th International Classification of Diseases (ICD-11), released in January 2021, characterizes ASD by the associated deficits in the ability to initiate and sustain two-way social communication and restricted or repetitive behavior unusual for the individual's age or situation. Although linked with early childhood, the symptoms can appear later as well. Symptoms can be detected before the age of two and experienced practitioners can give a reliable diagnosis by that age. However, official diagnosis may not occur until much older, even well into adulthood. There is a large degree of variation in how much support a person with ASD needs in day-to-day life. This can be classified by a further diagnosis of ASD level 1, level 2, or level 3. Of these, ASD level 3 describes people requiring very substantial support and who experience more severe symptoms. ASD-related deficits in nonverbal and verbal social skills can result in impediments in personal, family, social, educational, and occupational situations. This disorder tends to have a strong correlation with genetics along with other factors. More research is identifying ways in which epigenetics is linked to autism. Epigenetics generally refers to the ways in which chromatin structure is altered to affect gene expression. Mechanisms such as cytosine regulation and post-translational modifications of histones. Of the 215 genes contributing, to some extent in ASD, 42 have been found to be involved in epigenetic modification of gene expression. Some examples of ASD signs are specific or repeated behaviors, enhanced sensitivity to materials, being upset by changes in routine, appearing to show reduced interest in others, avoiding eye contact and limitations in social situations, as well as verbal communication. When social interaction becomes more important, some whose condition might have been overlooked suffer social and other exclusion and are more likely to have coexisting mental and physical conditions. Long-term problems include difficulties in daily living such as managing schedules, hypersensitivities, initiating and sustaining relationships, and maintaining jobs.

<span class="mw-page-title-main">MECP2 duplication syndrome</span> Medical condition

MECP2 duplication syndrome (M2DS) is a rare disease that is characterized by severe intellectual disability and impaired motor function. It is an X-linked genetic disorder caused by the overexpression of MeCP2 protein.

Burnside–Butler syndrome is a name that has been applied to the effects of microdeletion of DNA sequences involving four neurodevelopmental genes. Varying developmental and psychiatric disorders have been attributed to the microdeletion; however, the great majority of people with the deletion do not have any clinical features associated with it. More studies are needed to delineate the range of clinical presentation.

<span class="mw-page-title-main">DiGeorge syndrome</span> Condition caused by a microdeletion on the long arm of chromosome 22

DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a syndrome caused by a microdeletion on the long arm of chromosome 22. While the symptoms can vary, they often include congenital heart problems, specific facial features, frequent infections, developmental delay, intellectual disability and cleft palate. Associated conditions include kidney problems, schizophrenia, hearing loss and autoimmune disorders such as rheumatoid arthritis or Graves' disease.

16p11.2 deletion syndrome is a rare genetic condition caused by microdeletion on the short arm of chromosome 16. Most affected individuals experience global developmental delay and intellectual disability, as well as childhood-onset obesity. 16p11.2 deletion is estimated to account for approximately 1% of autism spectrum disorder cases.

References

  1. Niarchou, Maria; Chawner, Samuel J. R. A.; Doherty, Joanne L.; Maillard, Anne M.; Jacquemont, Sébastien; Chung, Wendy K.; Green-Snyder, LeeAnne; Bernier, Raphael A.; Goin-Kochel, Robin P.; Hanson, Ellen; Linden, David E. J.; Linden, Stefanie C.; Raymond, F. Lucy; Skuse, David; Hall, Jeremy; Owen, Michael J.; Bree, Marianne B. M. van den (16 January 2019). "Psychiatric disorders in children with 16p11.2 deletion and duplication". Translational Psychiatry. 9 (1): 8. doi: 10.1038/s41398-018-0339-8 . ISSN   2158-3188. PMC   6341088 . PMID   30664628.
  2. Fetit, Rana; Price, David J.; Lawrie, Stephen M.; Johnstone, Mandy (October 2020). "Understanding the clinical manifestations of 16p11.2 deletion syndrome: a series of developmental case reports in children". Psychiatric Genetics. 30 (5): 136–140. doi: 10.1097/YPG.0000000000000259 . ISSN   0955-8829. PMC   7497286 . PMID   32732550.
  3. Forrest, Marc P.; Dos Santos, Marc; Piguel, Nicolas H.; Wang, Yi-Zhi; Hawkins, Nicole A.; Bagchi, Vikram A.; Dionisio, Leonardo E.; Yoon, Sehyoun; Simkin, Dina; Martin-de-Saavedra, Maria Dolores; Gao, Ruoqi; Horan, Katherine E.; George, Alfred L.; LeDoux, Mark S.; Kearney, Jennifer A.; Savas, Jeffrey N.; Penzes, Peter (17 February 2023). "Rescue of neuropsychiatric phenotypes in a mouse model of 16p11.2 duplication syndrome by genetic correction of an epilepsy network hub". Nature Communications. 14 (1): 825. Bibcode:2023NatCo..14..825F. doi: 10.1038/s41467-023-36087-x . ISSN   2041-1723. PMC   9938216 . PMID   36808153.