2,6-Dimethoxybenzoquinone

Last updated
2,6-Dimethoxybenzoquinone
2,6-Dimethoxy-1,4-benzoquinone.svg
Names
Preferred IUPAC name
2,6-Dimethoxycyclohexa-2,5-diene-1,4-dione
Other names
2,6-Dimethoxy-1,4-benzoquinone; 2,6-DMBQ
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.007.714 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C8H8O4/c1-11-6-3-5(9)4-7(12-2)8(6)10/h3-4H,1-2H3 Yes check.svgY
    Key: OLBNOBQOQZRLMP-UHFFFAOYSA-N Yes check.svgY
  • O=C1C(/OC)=C\C(=O)\C=C1\OC
Properties
C8H8O4
Molar mass 168.148 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

2,6-Dimethoxybenzoquinone (2,6-DMBQ) is a chemical compound, classified as a benzoquinone, that has been found in Rauvolfia vomitoria [1] and in Tibouchina pulchra . [2]

Toxicity

At physiological concentrations 2,6-dimethoxybenzoquinone is an antibacterial substance. [3] At higher concentrations there is evidence that it is mutagenic, [4] [5] cytotoxic, [5] genotoxic, [6] and hepatotoxic. [7] [8] [9] Some reports have challenged its mutagenicity [10] and others exclude such a possibility. [11]

Related Research Articles

Ames test

The Ames test is a widely employed method that uses bacteria to test whether a given chemical can cause mutations in the DNA of the test organism. More formally, it is a biological assay to assess the mutagenic potential of chemical compounds. A positive test indicates that the chemical is mutagenic and therefore may act as a carcinogen, because cancer is often linked to mutation. The test serves as a quick and convenient assay to estimate the carcinogenic potential of a compound because standard carcinogen assays on mice and rats are time-consuming and expensive. However, false-positives and false-negatives are known.

Mutagen

In genetics, a mutagen is a physical or chemical agent that permanently changes genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can cause cancer, such mutagens are therefore carcinogens, although not all necessarily are. All mutagens have characteristic mutational signatures with some chemicals becoming mutagenic through cellular processes. Not all mutations are caused by mutagens: so-called "spontaneous mutations" occur due to spontaneous hydrolysis, errors in DNA replication, repair and recombination.

In genetics, genotoxicity describes the property of chemical agents that damages the genetic information within a cell causing mutations, which may lead to cancer. While genotoxicity is often confused with mutagenicity, all mutagens are genotoxic, whereas not all genotoxic substances are mutagenic. The alteration can have direct or indirect effects on the DNA: the induction of mutations, mistimed event activation, and direct DNA damage leading to mutations. The permanent, heritable changes can affect either somatic cells of the organism or germ cells to be passed on to future generations. Cells prevent expression of the genotoxic mutation by either DNA repair or apoptosis; however, the damage may not always be fixed leading to mutagenesis.

Hep G2

Hep G2 is a human liver cancer cell line.

Nitro compound

Nitro compounds are organic compounds that contain one or more nitro functional groups (−NO2). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature, being almost invariably produced by nitration reactions starting with nitric acid.

Toxication, toxification or toxicity exaltation is the conversion of a chemical compound into a more toxic form in living organisms or in substrates such as soil or water. The conversion can be caused by enzymatic metabolism in the organisms, as well as by abiotic chemical reactions. While the parent drug are usually less active, both the parent drug and its metabolite can be chemically active and cause toxicity, leading to mutagenesis, teratogenesis, and carcinogenesis. Different classes of enzymes, such as P450-monooxygenases, epoxide hydrolase, or acetyltransferases can catalyze the process in the cell, mostly in the liver.

Sudan I Chemical compound

Sudan I, is an organic compound, typically classified as an azo dye. It is an intensely orange-red solid that is added to colourise waxes, oils, petrol, solvents, and polishes. Sudan I has also been adopted for colouring various foodstuffs, especially curry powder and chili powder, although the use of Sudan I in foods is now banned in many countries, because Sudan I, Sudan III, and Sudan IV have been classified as category 3 carcinogens by the International Agency for Research on Cancer. Sudan I is still used in some orange-coloured smoke formulations and as a colouring for cotton refuse used in chemistry experiments.

Benzotrichloride Chemical compound

Benzotrichloride (BTC), also known as α,α,α-trichlorotoluene, phenyl chloroform or (trichloromethyl)benzene, is an organic compound with the formula C6H5CCl3. Benzotrichloride is an unstable, colorless (to yellowish), viscous, chlorinated hydrocarbon with a penetrating odor. Benzotrichloride is used extensively as a chemical intermediate for products of various classes, i.e. dyes and antimicrobial agents.

Cylindrospermopsin Chemical compound

Cylindrospermopsin is a cyanotoxin produced by a variety of freshwater cyanobacteria. CYN is a polycyclic uracil derivative containing guanidino and sulfate groups. It is also zwitterionic, making it highly water soluble. CYN is toxic to liver and kidney tissue and is thought to inhibit protein synthesis and to covalently modify DNA and/or RNA. It is not known whether cylindrospermopsin is a carcinogen, but it appears to have no tumour initiating activity in mice.

Flumequine

Flumequine is a synthetic fluoroquinolone antibiotic used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. The marketing authorization of flumequine has been suspended throughout the EU. It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections, as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. It was occasionally used in France to treat urinary tract infections under the trade name Apurone. However this was a limited indication because only minimal serum levels were achieved.

Norbormide Chemical compound

Norbormide is a toxic compound used as a rodenticide. It has several mechanisms of action, acting as a vasoconstrictor and calcium channel blocker, but is selectively toxic to rats and has relatively low toxicity to other species, due to a species specific action of opening the permeability transition pores in rat mitochondria.

Senecionine Chemical compound

Senecionine is a toxic pyrrolizidine alkaloid isolated from various botanical sources. It takes its name from the Senecio genus and is produced by many different plants in that genus, including Jacobaea vulgaris. It has also been isolated from several other plants, including Brachyglottis repanda, Emilia, Erechtites hieraciifolius, Petasites, Syneilesis, Crotalaria, Caltha leptosepala, and Castilleja.

Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes.

<i>Rauvolfia vomitoria</i> Species of plant

Rauvolfia vomitoria, the poison devil's-pepper, is a plant species in the genus Rauvolfia. It is native from Senegal east to Sudan and Tanzania, south to Angola; and naturalized in China, Bangladesh, different ranges of Himalayan and Puerto Rico. The plant contains a number of compounds of interest to the pharmaceutical industry and is widely used in traditional medicine.

<i>Tibouchina pulchra</i>

Tibouchina pulchra is a plant species in the genus Tibouchina.

Riddelliine Chemical compound

Riddelliine is a chemical compound classified as a pyrrolizidine alkaloid. It was first isolated from Senecio riddellii and is also found in a variety of plants including Jacobaea vulgaris, Senecio vulgaris, and others plants in the genus Senecio.

1,4-Naphthoquinone Chemical compound

1,4-Naphthoquinone or para-naphthoquinone is an organic compound derived from naphthalene. It forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit. It is an isomer of 1,2-naphthoquinone.

Bis(trifluoromethyl)peroxide Chemical compound

Bis(trifluoromethyl)peroxide (BTP) is a fluorocarbon derivative first produced by Frédéric Swarts. It has recently been discovered that it is a good initiator for the polymerization of unsaturated ethylene-like molecules. It produces good quality polymers which are quite stable. This property is the reason an economical synthesis is sought for BTP. This chemical is unusual in the fact that unlike many peroxides, bis(trifluoromethyl)peroxide is a gas, is nonexplosive and has good thermal stability.

Glycidamide Chemical compound

Glycidamide is part of the chemical group of amides and oxiranes, it is classified as a carcinogenic substance. It is associated with tobacco either as natural component, pyrolysis product in tobacco smoke or additive for one or more types of tobacco products. Glycidamide is formed from acrylamide. Acrylamide is an industrial chemical which is used in several ways, such as production of polyacrylamides for (waste)water treatment, textile, paper processing and cosmetics. It is also a product formed in certain foods prepared at high temperature frying, baking or roasting, such as fried potatoes, bakery products and coffee. Glycidamide is formed through the reaction of unsaturated fatty acids with oxygen. It is a dangerous substance, since it causes small mutations in cells which can result in several forms of cancer.

Bisphenol F is a small aromatic organic compound with the chemical formula (HOC
6
H
4
)
2
CH
2
. It is related to bisphenol A through its basic structure, as both belong to the category of molecules known as bisphenols, which feature two phenol groups connected via a linking group. In BPF, the two aromatic rings are linked by a methylene connecting group.

References

  1. Morris Kupchan, S.; Obasi, Mang E. (1960). "A Note on the Occurrence of 2,6-Dimethoxybenzoquinone in Rauwolfia vomitoria". Journal of the American Pharmaceutical Association (Scientific Ed.). 49 (4): 257–258. doi:10.1002/jps.3030490421. PMID   13853494.
  2. Jones, Ellery; Ekundayo, Olusegun; Kingston, David G. I. (1981). "Plant Anticancer Agents. XI. 2,6-Dimethoxybenzoquinone as a Cytotoxic Constituent of Tibouchina pulchra". Journal of Natural Products. 44 (4): 493–494. doi:10.1021/np50016a019.
  3. Nishina, Atsuyoshi; Hasegawa, Kinichi; Uchibori, Tsuyoshi; Seino, Hajime; Osawa, Toshihiko (1991). "2,6-Dimethoxy-p-benzoquinone as an antibacterial substance in the bark of Phyllostachys heterocycla var. Pubescens, a species of thick-stemmed bamboo". Journal of Agricultural and Food Chemistry. 39 (2): 266–269. doi:10.1021/jf00002a009.
  4. Canonero R; Poggi C Mutagenic activity of 2,6-dimethoxy-1,4-benzoquinone, produced during the nitrosation of dimethophrine, in V 79 cells. Bollettino della Societa italiana di biologia sperimentale (1988), 64(1), 61-8
  5. 1 2 Brambilla G; Robbiano L; Cajelli E; Martelli A; Turmolini F; Mazzei M Cytotoxic, DNA-damaging and mutagenic properties of 2,6-dimethoxy-1,4-benzoquinone, formed by dimethophrine-nitrite interaction. The Journal of Pharmacology and Experimental Therapeutics (1988), 244(3), 1011-5
  6. Mazzei M; Roma G; Balbi A; Sottofattori E; Robbiano L Formation of 2,6-dimethoxy-1,4-benzoquinone, a highly genotoxic compound, from the reaction of sodium nitrite with the sympathomimetic drug dimethophrine in acidic aqueous solution. Il Farmaco; edizione scientifica (1988), 43(6), 523-38
  7. Moore, Gregory A.; Rossi, Luisa; Nicotera, Pierluigi; Orrenius, Sten; O'Brien, Peter J. Quinone toxicity in hepatocytes: studies on mitochondrial calcium release induced by benzoquinone derivatives. Archives of Biochemistry and Biophysics (1987), 259(2), 283-95.
  8. Siraki, Arno G.; Chan, Tom S.; O'Brien, Peter J. Application of Quantitative Structure-Toxicity Relationships for the Comparison of the Cytotoxicity of 14 p-Benzoquinone Congeners in Primary Cultured Rat Hepatocytes Versus PC12 Cells. Toxicological Sciences (2004), 81(1), 148-159
  9. Chan, Katie; Jensen, Neil; O'Brien, Peter J. Structure-activity relationships for thiol reactivity and rat or human hepatocyte toxicity induced by substituted p-benzoquinone compounds. Journal of Applied Toxicology (2008), 28(5), 608-620.
  10. Non-mutagenicity of some wood-related compounds in the bacterial/microsome plate incorporation and microsuspension assays. Mohtashamipur, E., Norpoth, K. International archives of occupational and environmental health. (1984)
  11. International Journal of Toxicology, 26:253–259, Safety Studies Regarding a Standardized Extract of Fermented Wheat Germ James T. Heimbach JHeimbach LLC, Port Royal, Virginia, USA Gyula Sebestyen Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary Gabor Semjen Department of Pharmacology and Toxicology, Faculty of Veterinary Science, Szent Istvan University, Budapest, Hungary Elke Kennepohl Write-Tox Consulting, Spruce Grove, Alberta, Canada