Many photosynthetic life forms (plants, algae, phototrophic and chemoautotrophic bacteria, and archaea) require a way to utilize carbon into their metabolic pathways. This usually occurs in pathways that fix carbon from carbon dioxide (CO2). In the 3-hydroxypropionate bicycle, photosynthetic organisms like Chloroflexus aurantiacus, fix CO2 and bicarbonate (HCO3− ) as part of their metabolic processes. [1]
The 3-hydroxypropionate bicycle, also known as the 3-hydroxypropionate pathway, is a process that allows some bacteria to generate 3-hydroxypropionate using carbon dioxide. [2] It is divided into two parts or reactions. The overall reaction of the 3-hydroxypropionate pathway is 3 HCO−3 + 5 ATP + 6 NADPH + 1 quinone → 1 pyruvate + 6 NADP + 1 quinoneH2 + 3 ADP + 3 phosphate + 2 AMP + 2 pyrophosphate. [3]
In this pathway CO2 is fixed (i.e. incorporated) by the action of two enzymes, acetyl-CoA carboxylase and propionyl-CoA carboxylase. These enzymes generate malonyl-CoA and (S)-methylmalonyl-CoA, respectively.
Malonyl-CoA, in a series of reactions, is further split into acetyl-CoA and glyoxylate. Glyoxylate is incorporated into beta-methylmalyl-coA which is then split, again through a series of reactions, to release pyruvate as well as acetate, which is used to replenish the cycle. [3]
This pathway has been demonstrated in Chloroflexus , a nonsulfur photosynthetic bacterium; however, other studies suggest that 3-hydroxypropionate bicycle is used by several chemotrophic archaea. [1] [4] T In E. coli 3-hydroxypropionate bicycle has been studied and found to be insensitive to oxygen. This means that within the pathways there is nothing that oxygen can affect because in either part of the pathway or the oxygen is used to drive the reaction forward. [5]
Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production.
The green sulfur bacteria are a phylum, Chlorobiota, of obligately anaerobic photoautotrophic bacteria that metabolize sulfur.
Chloroflexus aurantiacus is a photosynthetic bacterium isolated from hot springs, belonging to the green non-sulfur bacteria. This organism is thermophilic and can grow at temperatures from 35 to 70 °C. Chloroflexus aurantiacus can survive in the dark if oxygen is available. When grown in the dark, Chloroflexus aurantiacus has a dark orange color. When grown in sunlight it is dark green. The individual bacteria tend to form filamentous colonies enclosed in sheaths, which are known as trichomes.
C3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C4 and CAM. This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:
Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon to organic compounds. These organic compounds are then used to store energy and as structures for other biomolecules. Carbon is primarily fixed through photosynthesis, but some organisms use chemosynthesis in the absence of sunlight. Chemosynthesis is carbon fixation driven by chemical energy rather than from sunlight.
Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle.
An acetogen is a microorganism that generates acetate (CH3COO−) as an end product of anaerobic respiration or fermentation. However, this term is usually employed in a narrower sense only to those bacteria and archaea that perform anaerobic respiration and carbon fixation simultaneously through the reductive acetyl coenzyme A (acetyl-CoA) pathway (also known as the Wood-Ljungdahl pathway). These genuine acetogens are also known as "homoacetogens" and they can produce acetyl-CoA (and from that, in most cases, acetate as the end product) from two molecules of carbon dioxide (CO2) and four molecules of molecular hydrogen (H2). This process is known as acetogenesis, and is different from acetate fermentation, although both occur in the absence of molecular oxygen (O2) and produce acetate. Although previously thought that only bacteria are acetogens, some archaea can be considered to be acetogens.
Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.
Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; EC 4.1.1.31, PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO3−) to phosphoenolpyruvate (PEP) to form the four-carbon compound oxaloacetate and inorganic phosphate:
In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine to form triglycerides, the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surrounds the organelles within the cells. In addition to cytosolic fatty acid synthesis, there is also mitochondrial fatty acid synthesis (mtFASII), in which malonyl-CoA is formed from malonic acid with the help of malonyl-CoA synthetase (ACSF3), which then becomes the final product octanoyl-ACP (C8) via further intermediate steps.
The reverse Krebs cycle is a sequence of chemical reactions that are used by some bacteria and archaea to produce carbon compounds from carbon dioxide and water by the use of energy-rich reducing agents as electron donors.
The Wood–Ljungdahl pathway is a set of biochemical reactions used by some bacteria. It is also known as the reductive acetyl-coenzyme A (acetyl-CoA) pathway. This pathway enables these organisms to use hydrogen as an electron donor, and carbon dioxide as an electron acceptor and as a building block to generate acetate for biosynthesis.
In enzymology, a biotin carboxylase (EC 6.3.4.14) is an enzyme that catalyzes the chemical reaction
3-hydroxypropionate dehydrogenase (NADP+) (EC 1.1.1.298) is an enzyme with systematic name 3-hydroxypropionate:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Malonyl CoA reductase (malonate semialdehyde-forming) (EC 1.2.1.75, NADP-dependent malonyl CoA reductase, malonyl CoA reductase (NADP)) is an enzyme with systematic name malonate semialdehyde:NADP+ oxidoreductase (malonate semialdehyde-forming). This enzyme catalyse the following chemical reaction
Succinate-semialdehyde dehydrogenase (acylating) (EC 1.2.1.76, succinyl-coA reductase, coenzyme-A-dependent succinate-semialdehyde dehydrogenase) is an enzyme with systematic name succinate semialdehyde:NADP+ oxidoreductase (CoA-acylating). This enzyme catalyses the following chemical reaction
Acrylyl-CoA reductase (NADPH) (EC 1.3.1.84) is an enzyme with systematic name propanoyl-CoA:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
3-Hydroxypropionyl-CoA synthase is an enzyme with systematic name hydroxypropionate:CoA ligase (AMP-forming). This enzyme catalyses the following chemical reaction
Methanococcus maripaludis is a species of methanogenic archaea found in marine environments, predominantly salt marshes. M. maripaludis is a non-pathogenic, gram-negative, weakly motile, non-spore-forming, and strictly anaerobic mesophile. It is classified as a chemolithoautotroph. This archaeon has a pleomorphic coccoid-rod shape of 1.2 by 1.6 μm, in average size, and has many unique metabolic processes that aid in survival. M. maripaludis also has a sequenced genome consisting of around 1.7 Mbp with over 1,700 identified protein-coding genes. In ideal conditions, M. maripaludis grows quickly and can double every two hours.
The 3-Hydroxypropionate/4-hydroxybutyrate cycle, also known as the 3HP/4HB cycle, is a specialized carbon fixation process used by some archaea, including Thermoproteota. For these organisms to survive and grow autotrophically in hostile settings, such as hydrothermal vents, this cycle is essential. Carbon dioxide is effectively transformed by the process into organic chemicals like acetyl-CoA, which can then be utilized for growth and energy production. This route is specific to organisms that fix CO2 in high-temperature, low-oxygen settings, in contrast to the more well-known Calvin cycle which does not perform as well at fixing CO2 under these conditions.