3D braided fabrics are fabrics in which yarn runs through the braid in all three directions, formed by inter-plaiting three orthogonal sets of yarn. [1] The fiber architecture of three-dimensional braided fabrics provides high strength, stiffness, and structural integrity, making them suitable for a wide array of applications. 3D fabrics can be produced via weaving, knitting, and non-weaving processes.
Three-dimensional braiding is among the oldest and most important of textile processes, transforming small natural fibers into more functional forms. Fabrics used in 3D braiding, such as rope, have been used since 4,000 BC.
In 1748, patents for the first 3D braiding machines were initiated in England. Most 3D braiding machines of the time were developed by modifying 2D braiding machines. In 1767, the first braiding machines which produced two-dimensional fabrics whose properties were different from 3D fabrics appeared in Germany. During the 1960s, the U.S. Government, as well as industrial and academic researchers, developed 3D braiding machines for use in producing composite material preforms, such as carbon fiber composites. [2]
3D braids show improved mechanical and structural properties. An important characteristic of 3D braids is their ability to form a variety of complex shapes; the direct manufacturing of complex structural shapes helps to eliminate the process of cutting to form joints, overlaps, and splices. 3D braided fabrics have high torsional stability and structural integrity. [3]
A track plate is kept at the bottom of the machine. Packages, which supply axial yarns, are kept beneath the track plate. Bobbins are mounted on the carrier, which is pushed by horn gears over the track plate. Braiding yarns are fed from these bobbins. The relative motion of the braiding yarns and the axial yarn determines the pattern and the structure of the braid. [3] The 3D braiding process is a minor modification of 2D braiding process, where the standing ends are added to the braiding yarns that are moving. The most important 3D braiding techniques are discussed below. [4]
In circular braiding, the bobbins (with opposite directions of rotation) move in two concentric orbits. The two orbits interfere to form dephased sinusoidal oscillations that determine the thread's pattern and crossing point. At this crossing point, the bobbins change their path to produce the upper and inner side of the braid. Generally, the circular braiding process produces braids with rotational symmetry. The over-braiding process follows the same principle as the circular braiding process, but the only modification is that the crossing point is located at the center. [4]
In this process, the bobbins move on the X and Y axes, which are mutually perpendicular to each other. In each step, the bobbins move to the neighboring crossing point in both axis and both directions, and stop for a specific interval of time. Basic arrangement of the braiding field is obtained after a minimum of four steps. This method produces braids which have a constant cross section. [4]
In the two-step braiding process, the bobbins move continuously without stopping. They move on the track plate through the complete structure and around the standing ends, such that the movements of bobbins are faster when compared to the four-step braiding process. The bobbins can move only in two directions, so the process is called the two-step braiding process. [4]
The 3D rotary braiding process consists of base plates with horn gears and mobile bobbins arranged upon them. Switches are used to control the position of the threads and horn gears. [4]
3D braided fabrics have found applications in areas including medicine, aerospace, automobiles, train components, and reinforced hoses. [5] The initial development of 3D braided fabrics came from the composite and medical industries. 3D braided fabrics can be manufactured in myriad varieties of cross-sections, and their near-net complex shapes made it possible to design very specialized products for both industries. [6] In helicopters, typical structural components like beams, sandwich structures, frames, and panels are manufactured using 3D braided profiles. Similarly, 3D fabrics are used to manufacture complex beam structures and floor panels in passenger cars. For train structures, different components manufactured from 3D braided profiles include the roof panel, interior components, side panels, and body structures.
In the medical industry, 3D braided fabrics find applications in stent grafts, bifurcated stents, arm and leg prosthetics, and braided sutures. Surgeons initially used two separate implant procedures for bifurcation stenosis treatment, which was time-consuming. With the advent of 3D braided fabric, multiple dendrite circular braids were produced for bifurcation stenosis treatment, which is flexible and less time-consuming. With multiple tubular braided structures, various cardiovascular implants can be produced. [7]
Braiding is a unique technology for producing high-volume, yet low-cost, composites. [8] With 3D braided fabric as reinforcement, complex shapes can be manufactured inexpensively. The 3D braided reinforced composites also exhibit high delamination resistance. [9]
Textile is an umbrella term that includes various fiber-based materials, including fibers, yarns, filaments, threads, different fabric types, etc. At first, the word "textiles" only referred to woven fabrics. However, weaving is not the only manufacturing method, and many other methods were later developed to form textile structures based on their intended use. Knitting and non-woven are other popular types of fabric manufacturing. In the contemporary world, textiles satisfy the material needs for versatile applications, from simple daily clothing to bulletproof jackets, spacesuits, and doctor's gowns.
Carbon fibers or carbon fibres are fibers about 5 to 10 micrometers (0.00020–0.00039 in) in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages: high stiffness, high tensile strength, high strength to weight ratio, high chemical resistance, high-temperature tolerance, and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, motorsports, and other competition sports. However, they are relatively expensive compared to similar fibers, such as glass fiber, basalt fibers, or plastic fibers.
Woolen or woollen is a type of yarn made from carded wool. Woolen yarn is soft, light, stretchy, and full of air. It is thus a good insulator, and makes a good knitting yarn. Woolen yarn is in contrast to worsted yarn, in which the fibers are combed to lie parallel rather than carded, producing a hard, strong yarn.
Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
Basalt fibers are produced from basalt rocks by melting them and converting the melt into fibers. Basalts are rocks of igneous origin. The main energy consumption for the preparation of basalt raw materials to produce of fibers is made in natural conditions. Basalt fibers are classified into 3 types:
Metallic fibers are manufactured fibers composed of metal, metallic alloys, plastic-coated metal, metal-coated plastic, or a core completely covered by metal.
Textile manufacturing or textile engineering is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.
Warp knitting is defined as a loop-forming process in which the yarn is fed into the knitting zone, parallel to the fabric selvage. It forms vertical loops in one course and then moves diagonally to knit the next course. Thus the yarns zigzag from side to side along the length of the fabric. Each stitch in a course is made by many different yarns. Each stitch in one wale is made by several different yarns.
Pultrusion is a continuous process for manufacture of fibre-reinforced plastics with constant cross-section. The term is a portmanteau word, combining "pull" and "extrusion". As opposed to extrusion, which pushes the material, pultrusion pulls the material.
The manufacture of textiles is one of the oldest of human technologies. To make textiles, the first requirement is a source of fiber from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving, with color and patterns, which turns it into cloth. The machine used for weaving is the loom. For decoration, the process of coloring yarn or the finished material is dyeing. For more information of the various steps, see textile manufacturing.
Heat setting is a term used in the textile industry to describe a thermal process usually taking place in either a steam atmosphere or a dry heat environment. The effect of the process gives fibers, yarns or fabric dimensional stability and, very often, other desirable attributes like higher volume, wrinkle resistance or temperature resistance. Very often, heat setting is also used to improve attributes for subsequent processes.
In textile manufacturing, finishing refers to the processes that convert the woven or knitted cloth into a usable material and more specifically to any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finish textile or clothing. The precise meaning depends on context.
Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.
Textile-reinforced concrete is a type of reinforced concrete in which the usual steel reinforcing bars are replaced by textile materials. Instead of using a metal cage inside the concrete, this technique uses a fabric cage inside the same.
A braiding machine is a device that interlaces three or more strands of yarn or wire to create a variety of materials, including rope, reinforced hose, covered power cords, and some types of lace. Braiding materials include natural and synthetic yarns, metal wires, leather tapes, and others.
Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
Three-dimensional composites use fiber preforms constructed from yarns or tows arranged into complex three-dimensional structures. These can be created from a 3D weaving process, a 3D knitting process, a 3D braiding process, or a 3D lay of short fibers. A resin is applied to the 3D preform to create the composite material. Three-dimensional composites are used in highly engineered and highly technical applications in order to achieve complex mechanical properties. Three-dimensional composites are engineered to react to stresses and strains in ways that are not possible with traditional composite materials composed of single direction tows, or 2D woven composites, sandwich composites or stacked laminate materials.
Tailored fiber placement (TFP) is a textile manufacturing technique based on the principle of sewing for a continuous placement of fibrous material for composite components. The fibrous material is fixed with an upper and lower stitching thread on a base material. Compared to other textile manufacturing processes fiber material can be placed near net-shape in curvilinear patterns upon a base material in order to create stress adapted composite parts.
3D textiles are three-dimensional structures made with different manufacturing methods such as weaving, knitting, braiding, or nonwoven, or made with alternative technologies. 3D textiles are produced with three planar geometry, opposed to 2D textiles that are made on two planes. The weave in 2D textiles is perpendicular. The yarn is fed along two axis: length (x-axis) and width (y-axis), while 3D textiles also have a perpendicular weave, but they have an extra yarn with an angular feeding (z-axis) which creates thickness. 3D weaves are orthogonal weave structures, multilayer structures, and angle interlocks. 3D textiles have more manufacturing opportunities, various properties, and a broader scope of applications. These textiles have a wide range of applications, but they are most commonly used where performance is the primary criterion, such as technical textiles. Composite materials, manufacturing is one of the significant areas of using 3D textiles.
A blend is a mixture of two or more fibers. In yarn spinning, different compositions, lengths, diameters, or colors may be combined to create a blend. Blended textiles are fabrics or yarns produced with a combination of two or more types of different fibers, or yarns to obtain desired traits and aesthetics. Blending is possible at various stages of textile manufacturing. The term, blend, refers to spun fibers or a fabric composed of such fibers. There are several synonymous terms: a combination yarn is made up of two strands of different fibers twisted together to form a ply; a mixture or mixed cloth refers to blended cloths in which different types of yarns are used in warp and weft sides.