Three-dimensional composites use fiber preforms constructed from yarns or tows arranged into complex three-dimensional structures. These can be created from a 3D weaving process, a 3D knitting process, a 3D braiding process, or a 3D lay of short fibers. A resin is applied to the 3D preform to create the composite material. Three-dimensional composites are used in highly engineered and highly technical applications in order to achieve complex mechanical properties. Three-dimensional composites are engineered to react to stresses and strains in ways that are not possible with traditional composite materials composed of single direction tows, or 2D woven composites, sandwich composites or stacked laminate materials.
Three dimensional woven fabrics are fabrics that could be formed to near net shape with considerable thickness. There is no need for layering to create a part, because a single fabric provides the full three-dimensional reinforcement. The 3-D woven fabric is a variant of the 2D weaving process, and it is an extension of the very old technique of creating double and triple woven cloth. 3D weaving allows the production of fabrics up to 10 cm in thickness. [1] Fibers placed in the thickness direction are called z-yarn, warp weaver, or binder yarn for 3D woven fabrics. More than one layer of fabric is woven at the same time, and z-yarn interlaces warp and woof yarns of different layers during the process. At the end of the weaving process, an integrated 3D woven structure, which has a considerable thickness, is produced. [2] Three-dimensional woven structures can create composite materials with fiber volume fractions around 50% in both 3D unit cell and 3D orthogonal structures. [3]
Angle-interlock three-dimensional woven structures are also common in order to create much thicker woven preforms. In the interlock structures yarns can be woven from one layer of yarns to another and then back to the original layer to lock adjacent layers to each other. In complex interlock structures yarns may be woven at specified points into several layers in order to join multiple layers. These structures have a great advantage over laminated materials because of their excellent resistance to layer delamination. [4]
By using jacquard woven techniques such as bifurcation, the 3D woven preforms can be created into nearly endless shapes ranging from a standard I-Beam to a complex Sine-Curve I-Beam, to Aircraft Airfoils, and many other shapes. 3D woven composites, finished with resin transfer molding have been produced larger than 26 feet long. [5]
3D woven composites are used for various engineering applications, including engine rotors, rocket nose cones and nozzles, engine mounts, aircraft framework, T- and X-shape panels, leading edges for aircraft wings, and I-Beams for civil infrastructure. [6]
There are several types of 3D woven fabrics that are commercially available; they can be classified according to their weaving technique. [7]
"3D braided fabrics technology is an extension of the well-established 2-D braiding technology wherein the fabric is constructed by the intertwining of two or more yarn systems to form an integral structure." [13] Developed in the late 1960s, in an effort to circumvent the problems related to 2D composite laminates yet at the same time retain the benefits of the braiding process. [14] Braided structures, used as composite preforms, have a number of advantages over other competing processes, such as filament winding and weaving. [15]
Braided composites have superior toughness and fatigue strength in comparison to filament wound composites. Woven fabrics have orthogonal interlacement while the braids can be constructed over a wide range of angles, from 10 to 858. An additional set of axial yarns can be introduced to the braiding process to produce triaxial braids (Fig. 1); triaxial braids are more stable and exhibit nearly isotropic properties.
Braids can be produced either as seamless tubes or flat fabrics with a continuous selvedge. Composites produced with the braided preforms exhibit superior strength and crack resistance in comparison to broadcloth composites, due to fiber continuity; Composites with braided holes (Fig.2) exhibit about 1.8 times the strength in comparison to drilled holes, again due to fiber continuity.
There are two main types of 3D braiders, horn gear and track and column types. Horn gear type 3D braiders use a large number of traditional horn gears for carrier propulsion. By arranging the horn gears in a square, 3D solid braids with a variety of cross-sections (e.g. H section) can be produced. [16] [17]
Applications of 3D Braided Composites
The stitching of laminates in the through thickness direction with a high strength thread has proven a simple, low-cost method for producing 3-D composites. The stitching process basically involves sewing high tensile strength yarn (e.g. glass, carbon or Kevlar), through an uncured prepreg laminate or dry fabric plies using an industrial sewing machine. [18] [19]
Studies report an improvement to in-plane mechanical properties due to stitching, whereas others find unchanged or degraded properties.The data assembled for stitched laminates reveal that the tension, compression, flexure, shear and open-hole strengths are improved or degraded up to 20% by stitching relative to those of unstitched laminates. [20]
Applications of 3D Stitched Composites
This alternative method to the standard stitching process was first introduced in the late 1980s and was commercially developed by the company Aztex as Z-Fiber technology. "This technology consists of embedding previously cured reinforcement fibers into a thermoplastic foam that is then placed on top of a prepreg, or dry fabric, lay-up and vacuum bagged." 12 The foam will collapse as temperature and pressure are increased, which allows the fibers to be slowly pushed into the lay-up. 3D reinforcement in regards to Z-pinning is necessary to introduce a mechanical link between the different plies of the composite lamina, this link being a stiff carbon fiber rod in Z-pinning. Z-pin (carbon fiber of small diameter embedded in the thickness direction-z) composites are a means to provide higher through-the-thickness stiffness and strength that 2D woven composites do not possess.
Application of 3D Z-Pinned Composites
Many Three-Dimensional preforms are transformed into complex composite materials when a resin is applied and cured within the preform to create a solid fiber reinforced matrix. The most common form of resin application for 3D preforms is the Resin Transfer Molding process where a mold is created in the shape of a preform and the preform is then placed inside. The mold is closed and then the resin of the matrix material is injected under particular temperature and pressure, then allowed to cure. the mold is then removed from the exterior of the 3D composite material. [20]
The microstructure of a 3D woven composite is mainly determined by the fiber architecture to the woven preform and weaving process, and to a lesser extent by the process of consolidation.Various types of defects are inadvertently created during the 3D weaving process that can possibly degrade the in-plane, through-thickness, and impact properties of the 3D composite. Research has found that testing various 3D composite materials that " ...the strength is the same or slightly higher than an equivalent two-dimensional (2D) material." When compared to a 2D composite, the impact resistance, compression after impact (CAI), and delamination control is significantly improved with a 3D composite without significantly reducing the mechanical properties along the plane. [21]
Carbon fibers or carbon fibres are fibers about 5 to 10 micrometers (0.00020–0.00039 in) in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages: high stiffness, high tensile strength, high strength to weight ratio, high chemical resistance, high-temperature tolerance, and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, motorsports, and other competition sports. However, they are relatively expensive compared to similar fibers, such as glass fiber, basalt fibers, or plastic fibers.
Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.
Woven fabric is any textile formed by weaving. Woven fabrics are often created on a loom, and made of many threads woven on a warp and a weft. Technically, a woven fabric is any fabric made by interlacing two or more threads at right angles to one another. Woven fabrics can be made of natural fibers, synthetic fibers, or a mixture of both, such as cotton and polyester.
Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.
Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
Metallic fibers are manufactured fibers composed of metal, metallic alloys, plastic-coated metal, metal-coated plastic, or a core completely covered by metal.
Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures. This process involves winding filaments under tension over a rotating mandrel. The mandrel rotates around the spindle while a delivery eye on a carriage traverses horizontally in line with the axis of the rotating mandrel, laying down fibers in the desired pattern or angle to the rotational axis. The most common filaments are glass or carbon and are impregnated with resin by passing through a bath as they are wound onto the mandrel. Once the mandrel is completely covered to the desired thickness, the resin is cured. Depending on the resin system and its cure characteristics, often the mandrel is autoclaved or heated in an oven or rotated under radiant heaters until the part is cured. Once the resin has cured, the mandrel is removed or extracted, leaving the hollow final product. For some products such as gas bottles, the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.
Warp knitting is defined as a loop-forming process in which the yarn is fed into the knitting zone, parallel to the fabric selvage. It forms vertical loops in one course and then moves diagonally to knit the next course. Thus the yarns zigzag from side to side along the length of the fabric. Each stitch in a course is made by many different yarns. Each stitch in one wale is made by several different yarns.
The manufacture of textiles is one of the oldest of human technologies. To make textiles, the first requirement is a source of fiber from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving, which turns yarn into cloth. The machine used for weaving is the loom. For decoration, the process of colouring yarn or the finished material is dyeing. For more information of the various steps, see textile manufacturing.
Ripstop fabrics are woven fabrics, often made of nylon, using a reinforcing technique that makes them more resistant to tearing and ripping. During weaving, stronger reinforcement yarns are interwoven at regular intervals in a crosshatch pattern. The intervals are typically 5 to 8 millimeters. Thin and lightweight ripstop fabrics have a two-dimensional structure due to the thicker yarns being interwoven in thinner cloth. Older lightweight ripstop fabrics display the thicker interlocking thread patterns in the material quite prominently, but more modern weaving techniques make the ripstop threads less obvious. A similar effect can be achieved by weaving two or three fine yarns together at smaller intervals.
A fabric structure is a structure made of fabric, with or without a structural frame made from the weaving of the fabric itself. The technology provides end users a variety of aesthetic free-form building designs. Custom-made structures are engineered and fabricated to meet worldwide structural, flame retardant, weather-resistant, and natural force requirements. Fabric structures are considered a sub-category of tensile structure.
Textile-reinforced concrete is a type of reinforced concrete in which the usual steel reinforcing bars are replaced by textile materials. Instead of using a metal cage inside the concrete, this technique uses a fabric cage inside the same.
Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
In the field of composite materials, tufting is an experimental technology to locally reinforce continuous fibre-reinforced plastics along the z-direction, with the objective of enhancing the shear and delamination resistance of the structure.
Spread tow fabric (stf) is a type of lightweight fabric. Its production involves the steps of spreading a tow in thin and flat uni-directional tape, and weaving the tapes to a Spread Tow Fabric. This technique increases the mechanical properties of the material and is also used to reduce weight on composites. Manufacturers of Spread Tow Tapes include Oxeon AB, Teknomax Corp., Harmoni Industry Inc., Sakaiovex.
Tailored fiber placement (TFP) is a textile manufacturing technique based on the principle of sewing for a continuous placement of fibrous material for composite components. The fibrous material is fixed with an upper and lower stitching thread on a base material. Compared to other textile manufacturing processes fiber material can be placed near net-shape in curvilinear patterns upon a base material in order to create stress adapted composite parts.
3D braided fabrics are fabrics in which yarn runs through the braid in all three directions, formed by inter-plaiting three orthogonal sets of yarn. The fiber architecture of three-dimensional braided fabrics provides high strength, stiffness, and structural integrity, making them suitable for a wide array of applications. 3D fabrics can be produced via weaving, knitting, and non-weaving processes.
In materials science, reinforcement is a constituent of a composite material which increases the composite's stiffness and tensile strength.
3D textiles are three-dimensional structures made with different manufacturing methods such as weaving, knitting, braiding, or nonwoven, or made with alternative technologies. 3D textiles are produced with three planar geometry, opposed to 2D textiles that are made on two planes. The weave in 2D textiles is perpendicular. The yarn is fed along two axis: length (x-axis) and width (y-axis), while 3D textiles also have a perpendicular weave, but they have an extra yarn with an angular feeding (z-axis) which creates thickness. 3D weaves are orthogonal weave structures, multilayer structures, and angle interlocks. 3D textiles have more manufacturing opportunities, various properties, and a broader scope of applications. These textiles have a wide range of applications, but they are most commonly used where performance is the primary criterion, such as technical textiles. Composite materials, manufacturing is one of the significant areas of using 3D textiles.
Malimo is a textile manufacturing technique in which warp and weft yarns are sewn together. The method is also referred to as "stitch-bonding." It was invented in Eastern Germany in the 1950s. Malimo is used in a variety of applications, including apparel fabrics, wind turbine wings and isolation fabrics, and aerospace.
{{cite book}}
: CS1 maint: location missing publisher (link)