4-Pyridylnicotinamide

Last updated
4-Pyridylnicotinamide
4-pyridylnicotinamide sketch.png
Names
Preferred IUPAC name
N-(Pyridin-4-yl)pyridine-3-carboxamide
Other names
4-PNA; N-4-Pyridinyl-3-pyridinecarboxamide,; N-(Pyridin-4-yl)nicotinamide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C11H9N3O/c15-11(9-2-1-5-13-8-9)14-10-3-6-12-7-4-10/h1-8H,(H,12,14,15)
    Key: HVLLFBPOFNSPRN-UHFFFAOYSA-N
  • O=C(Nc1ccncc1)c2cccnc2
Properties
C11H9N3O
Molar mass 199.213 g·mol−1
Density 1.287 g/cm3
Boiling point 286.08 °C (546.94 °F; 559.23 K)
Structure
0 D
Related compounds
Related compounds
4,4'-bipyridine
Pyridine
Nicotinamide
4-Aminopyridine
3-Pyridylnicotinamide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

4-Pyridylnicotinamide (4-PNA), also known as N-(pyridin-4-yl)nicotinamide, is a kinked dipodal dipyridine which was originally developed for use in chemotherapy. [1] As in its isomer 3-pyridylnicotinamide, the nitrogen atoms on its pyridine rings can donate their electron lone pairs to metal cations, allowing it to bridge metal centers and act as a bidentate ligand in coordination polymers. [2] [3] [4] [5] It is synthesized through the reaction of nicotinoyl chloride and 4-aminopyridine. [1]

Related Research Articles

<span class="mw-page-title-main">Scorpionate ligand</span> Tridentate ligand which "pinches" the central metal atom

In coordination chemistry, a scorpionate ligand is a tridentate (three-donor-site) ligand that binds to a central atom in a fac manner. The most popular class of scorpionates are the hydrotris(pyrazolyl)borates or Tp ligands. These were also the first to become popular. These ligands first appeared in journals in 1966 from the then little-known DuPont chemist of Ukrainian descent, Swiatoslaw Trofimenko. Trofimenko called this discovery "a new and fertile field of remarkable scope".

1,2,4-Triazole (as ligand in coordination compounds, Htrz abbreviation is sometimes used) is one of a pair of isomeric chemical compounds with molecular formula C2H3N3, called triazoles, which have a five-membered ring of two carbon atoms and three nitrogen atoms. 1,2,4-Triazole and its derivatives find use in a wide variety of applications.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Coordination polymer</span> Polymer consisting of repeating units of a coordination complex

A coordination polymer is an inorganic or organometallic polymer structure containing metal cation centers linked by ligands. More formally a coordination polymer is a coordination compound with repeating coordination entities extending in 1, 2, or 3 dimensions.

<span class="mw-page-title-main">Bridging ligand</span> Ligand which connects two or more (usually metal) atoms in a coordination complex

In coordination chemistry, a bridging ligand is a ligand that connects two or more atoms, usually metal ions. The ligand may be atomic or polyatomic. Virtually all complex organic compounds can serve as bridging ligands, so the term is usually restricted to small ligands such as pseudohalides or to ligands that are specifically designed to link two metals.

<span class="mw-page-title-main">Hapticity</span> Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

<span class="mw-page-title-main">Crystal engineering</span> Designing solid structures with tailored properties

Crystal engineering studies the design and synthesis of solid-state structures with desired properties through deliberate control of intermolecular interactions. It is an interdisciplinary academic field, bridging solid-state and supramolecular chemistry.

<span class="mw-page-title-main">Sandwich compound</span> Chemical compound made of two ring ligands bound to a metal

In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic, covalent bonds to two arene (ring) ligands. The arenes have the formula CnHn, substituted derivatives and heterocyclic derivatives. Because the metal is usually situated between the two rings, it is said to be "sandwiched". A special class of sandwich complexes are the metallocenes.

<span class="mw-page-title-main">Metal–organic framework</span> Class of chemical substance

Metal–organic frameworks (MOFs) are a class of porous polymers consisting of metal clusters coordinated to organic ligands to form one-, two- or three-dimensional structures. The organic ligands included are sometimes referred to as "struts" or "linkers", one example being 1,4-benzenedicarboxylic acid (BDC).

Pyridine-<i>N</i>-oxide Chemical compound

Pyridine-N-oxide is the heterocyclic compound with the formula C5H5NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis.

<span class="mw-page-title-main">Croconic acid</span> Chemical compound

Croconic acid is a chemical compound with formula C5H2O5 or (C=O)3(COH)2. It has a cyclopentene backbone with two hydroxyl groups adjacent to the double bond and three ketone groups on the remaining carbon atoms. It is sensitive to light, soluble in water and ethanol and forms yellow crystals that decompose at 212 °C.

<span class="mw-page-title-main">Tris(acetylacetonato)iron(III)</span> Chemical compound

Tris(acetylacetonato) iron(III), often abbreviated Fe(acac)3, is a ferric coordination complex featuring acetylacetonate (acac) ligands, making it one of a family of metal acetylacetonates. It is a red air-stable solid that dissolves in nonpolar organic solvents.

<span class="mw-page-title-main">3-Pyridylnicotinamide</span> Chemical compound

The organic compound 3-pyridylnicotinamide (3-pna), also known as N-(pyridin-3-yl)nicotinamide, is a kinked dipodal dipyridine that is synthesized through the reaction of nicotinoyl chloride and 3-aminopyridine. The nitrogen atoms on its pyridine rings, like those of its isomer 4-pyridylnicotinamide, can donate their electron lone pairs to metal cations, allowing it to bridge metal centers and act as a bidentate ligand in coordination polymers. It can be used to synthesize polymers that have potentially useful gas adsorption properties.

In coordination chemistry, a macrocyclic ligand is a macrocyclic ring having at least nine atoms and three or more donor sites that serve as ligands. Crown ethers and porphyrins are prominent examples. Macrocyclic ligands often exhibit high affinity for metal ions, the macrocyclic effect.

<span class="mw-page-title-main">Transition metal nitrile complexes</span> Class of coordination compounds containing nitrile ligands (coordinating via N)

Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.

The nickel organic acid salts are organic acid salts of nickel. In many of these the ionised organic acid acts as a ligand.

Metal–inorganic frameworks (MIFs) are a class of compounds consisting of metal ions or clusters coordinated to inorganic ligands to form one-, two-, or three-dimensional structures. They are a subclass of coordination polymers, with the special feature that they are often porous. They are inorganic counterpart of Metal–organic frameworks.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

Pentaethylenehexamine (abbreviated PEHA) is a organic amine. It is composed of five ethylene groups -CH2CH2- joined together in a chain by four secondary amine groups (-NH-) and terminated on each end by primary amine groups (-NH2). Pentaethylenehexamine is a hexadentate ligand, owing to the Lewis basicity of the six amine groups. Pentaethylenehexamine is in the category of polyethyleneamines and is part of mixtures of these sold commercially.

<span class="mw-page-title-main">Metal-organic nanotube</span> Class of chemical substance

Metal–organic nanotubes (MONTs) are a class of crystalline coordination polymers consisting of organic ligands bonded to a metal or metal cluster that form single-walled one-dimensional porous structures. The usage of organic ligands allows the properties of the resulting material to be tuned, as in the parent class of metal-organic frameworks (MOFs), but like carbon nanotubes, MONTs are anisotropic structures.

References

  1. 1 2 Gardner, T. S.; Wenis, E.; Lee, J. (1954). "The Synthesis of Compounds for the Chemotherapy of Tuberculosis. Iv. The Amide Function". The Journal of Organic Chemistry. 19 (5): 753. doi:10.1021/jo01370a009.
  2. Kraft, P. E.; Laduca, R. L. (2012). "catena-Poly[[tetra-μ-benzoato-κ8O:O′-dicopper(II)]-μ-[N-(pyridin-4-yl)nicotinamide]2N:N′-[dibenzoato-κ2O-copper(II)]-μ-[N-(pyridin-4-yl)nicotinamide]2N:N]". Acta Crystallographica Section E. 68 (8): m1049–m1050. doi:10.1107/S1600536812030437. PMC   3414118 . PMID   22904725.
  3. Krishna Kumar, D. (2009). "Exploring the effect of chain length of bridging ligands in coordination complexes and polymers derived from mixed ligand systems of pyridylnicotinamides and dicarboxylates". Inorganica Chimica Acta. 362 (6): 1767–2013. doi:10.1016/j.ica.2008.08.033.
  4. Kumar, D. K.; Das, A.; Dastidar, P. (2006). "One-Dimensional Chains, Two-Dimensional Corrugated Sheets Having a Cross-Linked Helix in Metal−Organic Frameworks: Exploring Hydrogen-Bond Capable Backbones and Ligating Topologies in Mixed Ligand Systems". Crystal Growth & Design. 6 (8): 1903. doi:10.1021/cg0600344.
  5. Kumar, D. K.; Das, A.; Dastidar, P. (2006). "Exploring hydrogen-bond capable backbone and ligating topologies: Co(II) coordination polymers derived from mixed ligand systems". Journal of Molecular Structure. 796 (1–3): 139–145. Bibcode:2006JMoSt.796..139K. doi:10.1016/j.molstruc.2006.02.033.