A. F. J. Levi

Last updated
Anthony Levi
A.F.J. Levi faculty headshot.jpg
BornFebruary 3, 1959
NationalityAmerican
Alma mater University of Sussex
University of Cambridge
Known for Microdisk nanolaser

Hot electron transport

Optimal semiconductor device design
Scientific career
Fields Physics
Electrical Engineering
Institutions Bell Laboratories
University of Southern California

Anthony F. J. Levi (born 1959) is a British-born engineer and academic. He is professor of electrical and computer engineering at the Department of Electrical and Computer Engineering of the University of Southern California (USC).

Contents

Research

Levi has published research on experimental semiconductor device physics, including the experimental realization of the microdisk laser [1] [2] for the study of semiconductor lasers at the nanoscale. He has published on hot electron spectroscopy in semiconductors, [3] ballistic electron transport in heterostructure bipolar transistors, [4] room temperature operation of unipolar transistors with ballistic electron transport, [5] and optimal design of small electronic and photonic systems. [6] He is also author of the textbook Applied Quantum Mechanics, [7] [8] currently in its third edition.

Working with Agilent Technologies, Levi co-developed an optical connector plug-in package capable of transmitting data at an aggregate rate of 10 Gb/s in late 2000. [9]

Working with the Paul Scherrer Institute and researchers at the USC Viterbi School of Engineering, Levi helped advance a technique for defect detection in manufactured chips as well as for reverse engineering of hardware-embedded circuit design. [10] [11]

In an interview with Reuters, Levi commented on supply chain concerns facing the chip industry in the U.S. during the COVID-19 pandemic, suggesting that such issues could be mitigated by focusing on rebuilding the U.S. chip manufacturing and packaging industry. [12]

Notable Talks

Publications

Books

Related Research Articles

Deep-level transient spectroscopy (DLTS) is an experimental tool for studying electrically active defects in semiconductors. DLTS establishes fundamental defect parameters and measures their concentration in the material. Some of the parameters are considered as defect "finger prints" used for their identifications and analysis.

Indium gallium arsenide (InGaAs) is a ternary alloy of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.

<span class="mw-page-title-main">Sound amplification by stimulated emission of radiation</span>

Sound amplification by stimulated emission of radiation (SASER) refers to a device that emits acoustic radiation. It focuses sound waves in a way that they can serve as accurate and high-speed carriers of information in many kinds of applications—similar to uses of laser light.

<span class="mw-page-title-main">Marvin L. Cohen</span> American physicist

Marvin Lou Cohen is an American–Canadian theoretical physicist. He is a physics professor at the University of California, Berkeley. Cohen is a leading expert in the field of condensed matter physics. He is widely known for his seminal work on the electronic structure of solids.

Picosecond ultrasonics is a type of ultrasonics that uses ultra-high frequency ultrasound generated by ultrashort light pulses. It is a non-destructive technique in which picosecond acoustic pulses penetrate into thin films or nanostructures to reveal internal features such as film thickness as well as cracks, delaminations and voids. It can also be used to probe liquids. The technique is also referred to as picosecond laser ultrasonics or laser picosecond acoustics.

A quantum-well laser is a laser diode in which the active region of the device is so narrow that quantum confinement occurs. Laser diodes are formed in compound semiconductor materials that are able to emit light efficiently. The wavelength of the light emitted by a quantum-well laser is determined by the width of the active region rather than just the bandgap of the materials from which it is constructed. This means that much shorter wavelengths can be obtained from quantum-well lasers than from conventional laser diodes using a particular semiconductor material. The efficiency of a quantum-well laser is also greater than a conventional laser diode due to the stepwise form of its density of states function.

Albert Polman is a Dutch physicist and former director of the AMOLF research laboratory in Amsterdam.

Electrically operated display devices have developed from electromechanical systems for display of text, up to all-electronic devices capable of full-motion 3D color graphic displays. Electromagnetic devices, using a solenoid coil to control a visible flag or flap, were the earliest type, and were used for text displays such as stock market prices and arrival/departure display times. The cathode ray tube was the workhorse of text and video display technology for several decades until being displaced by plasma, liquid crystal (LCD), and solid-state devices such as thin-film transistors (TFTs), LEDs and OLEDs. With the advent of metal–oxide–semiconductor field-effect transistors (MOSFETs), integrated circuit (IC) chips, microprocessors, and microelectronic devices, many more individual picture elements ("pixels") could be incorporated into one display device, allowing graphic displays and video.

Fritz Peter Schäfer was a German physicist, born in Hersfeld, Hesse-Nassau. He is the co-inventor of the organic dye laser. His book, Dye Lasers, is considered a classic in the field of tunable lasers. In this book the chapter written by Schäfer gives an ample and insightful exposition on organic laser dye molecules in addition to a description on the physics of telescopic, and multiple-prism, tunable narrow-linewidth laser oscillators.

<span class="mw-page-title-main">Whispering-gallery wave</span> Wave that can travel around a concave surface

Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface. Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy.

Richard Magee Osgood Jr. was an American applied and pure physicist. He was Higgins Professor of Electrical Engineering and Applied Physics at Columbia University.

Giovanni Vignale is an Italian American physicist and Professor of Physics at the University of Missouri. Vignale is known for his work on density functional theory - a theoretical approach to the quantum many-body problem - and for several contributions to many-particle physics and spintronics. He is also the author of a monograph on the "Quantum Theory of the Electron Liquid" and a book entitled "The Beautiful Invisible - Creativity, imagination, and theoretical physics".

Indium aluminium nitride (InAlN) is a direct bandgap semiconductor material used in the manufacture of electronic and photonic devices. It is part of the III-V group of semiconductors, being an alloy of indium nitride and aluminium nitride, and is closely related to the more widely used gallium nitride. It is of special interest in applications requiring good stability and reliability, owing to its large direct bandgap and ability to maintain operation at temperatures of up to 1000 °C., making it of particular interest to areas such as the space industry. InAlN high-electron-mobility transistors (HEMTs) are attractive candidates for such applications owing to the ability of InAlN to lattice-match to gallium nitride, eliminating a reported failure route in the closely related aluminium gallium nitride HEMTs.

Germanium-tin is an alloy of the elements germanium and tin, both located in group 14 of the periodic table. It is only thermodynamically stable under a small composition range. Despite this limitation, it has useful properties for band gap and strain engineering of silicon-integrated optoelectronic and microelectronic semiconductor devices.

Photo-reflectance is an optical technique for investigating the material and electronic properties of thin films. Photo-reflectance measures the change in reflectivity of a sample in response to the application of an amplitude modulated light beam. In general, a photo-reflectometer consists of an intensity modulated "pump" light beam used to modulate the reflectivity of the sample, a second "probe" light beam used to measure the reflectance of the sample, an optical system for directing the pump and probe beams to the sample, and for directing the reflected probe light onto a photodetector, and a signal processor to record the differential reflectance. The pump light is typically modulated at a known frequency so that a lock-in amplifier may be used to suppress unwanted noise, resulting in the ability to detect reflectance changes at the ppm level.

Bose–Einstein condensation of polaritons is a growing field in semiconductor optics research, which exhibits spontaneous coherence similar to a laser, but through a different mechanism. A continuous transition from polariton condensation to lasing can be made similar to that of the crossover from a Bose–Einstein condensate to a BCS state in the context of Fermi gases. Polariton condensation is sometimes called “lasing without inversion”.

Diana Huffaker FIEEE, FOSA is a physicist working in compound semiconductors optical devices. She is the current Electrical Engineering Department Chair at the University of Texas at Arlington. Previously, she served as the Sêr Cymru Chair in Advanced Engineering and Materials and as Science Director of the Institute of Compound Semiconductors at Cardiff University. Her work includes compound semiconductor epitaxy, lasers, solar cells, optoelectronic devices, plasmonics, and Quantum dot and nanostructured materials.

<span class="mw-page-title-main">Buffer-gas trap</span> Device used to accumulate positrons

The buffer-gas trap (BGT) is a device used to accumulate positrons efficiently while minimizing positron loss due to annihilation, which occurs when an electron and positron collide and the energy is converted to gamma rays. The BGT is used for a variety of research applications, particularly those that benefit from specially tailored positron gases, plasmas and/or pulsed beams. Examples include use of the BGT to create antihydrogen and the positronium molecule.

Jingyu Lin is a Chinese-American physicist and engineer working in the field of wide bandgap semiconductors and photonic devices. She is a co-inventor of MicroLED. In 2000, the husband-wife research team led by Hongxing Jiang and Jingyu Lin proposed and realized the operation of the first MicroLED and passive driving MicroLED microdisplay. In 2009, their team and colleagues at III-N Technology, Inc. and Texas Tech University realized and patented the first active driving MicroLED microdisplay in VGA format by heterogeneously integrating MicroLED array with Si CMOS active-matrix driver.

Irving Philip Herman is an American physicist and the Edwin Howard Armstrong Professor of Applied Physics at Columbia University. He is an elected Fellow of the American Physical Society and of Optica, the former for "distinguished accomplishments in laser physics, notably the development and application of laser techniques to probe and control materials processing".

References

  1. McCall, S. L.; Levi, A. F. J.; Slusher, R. E.; Pearton, S. J.; Logan, R. A. (1992-01-20). “Whispering-gallery mode microdisk lasers” Applied Physics Letters. American Institute of Physics (AIP). 60 (3): 289-291. doi : 10.1063/1.106688 ISSN   0003-6951
  2. Levi, Barbara G. (September 1992). "What's the Shape of Things to Come in Semiconductor Lasers?". Physics Today. 45 (9): 17–18. Bibcode:1992PhT....45i..17L. doi:10.1063/1.2809793.
  3. Levi, A. F. J.; Hayes, J. R.; Platzman P. M.; Wiegmann, W. (1985-11-04). “Injected Hot Electron Transport in GaAs” Physical Review Letters. American Physical Society (APS). 55 (19): 2071-2073. doi : 10.1103/physrevlett.55.2071 PMID   10032002 ISSN   0031-9007
  4. Berthold, K.; Levi, A. F. J.; Walker, J.; Malik, R. J. (1988-06-27). “Extreme Nonequilibrium Electron Transport in Heterojunction Bipolar Transistors” Applied Physics Letters. American Institute of Physics (AIP). 52 (26): 2247-2249. doi : 10.1063/1.99545 ISSN   0003-6951
  5. Levi, A. F. J.; Chiu, T. H. (1987-09-28). “Room Temperature Operation of Hot Electron Transistors” Applied Physics Letters. American Institute of Physics (AIP). 51 (13): 984-986. doi : 10.1063/1.98784 ISSN   0003-6951
  6. Levi, A. F. J.; Haas, S. (2010-01-29). “Optimal Device Design” Cambridge: Cambridge University Press. doi : 10.1017/CBO9780511691881 ISBN   978-0-521-11660-2
  7. Frensley, William R. (January 2005). "Applied Quantum Mechanics". Physics Today. 58 (1): 55–56. Bibcode:2005PhT....58a..55L. doi: 10.1063/1.1881905 .
  8. Levi, A. F. J. (2023). “Applied Quantum Mechanics” (Third ed.). Cambridge University Press, ISBN   978-1-009-30807-6 doi : 10.1017/9781009308083
  9. Savage, Neil (August 1, 2002). "Linking With Light". IEEE Spectrum.
  10. "Groundbreaking Method Detects Defective Computer Chips". USC Viterbi News. October 8, 2019.
  11. "Technique Could Check Integrity of Computer Chips and Detect Tampering". Technology Networks. October 11, 2019.
  12. Nellis, Stephen; Jin, Hyunjoo (April 13, 2021). "Focus: Biden's chip dreams face reality check of supply chain complexity". Reuters.
  13. "Chip Scan: 3D X-Ray Imaging of CMOS Integrated Circuits". PSW Science. November 18, 2022.