ACSS2

Last updated
ACSS2
Identifiers
Aliases ACSS2 , ACAS2, ACS, ACSA, dJ1161H23.1, acyl-CoA synthetase short chain family member 2, Acetyl-Coenzyme A Synthetase 2, Acetyl-Coenzyme A Synthetase, Cytoplasmic, ACECS1, ACECS
External IDs OMIM: 605832 MGI: 1890410 HomoloGene: 6469 GeneCards: ACSS2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001076552
NM_001242393
NM_018677
NM_139274

NM_019811

RefSeq (protein)

NP_001070020
NP_001229322
NP_061147

NP_062785

Location (UCSC) Chr 20: 34.87 – 34.93 Mb Chr 2: 155.36 – 155.43 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Acyl-coenzyme A synthetase short-chain family member 2 is an enzyme that in humans is encoded by the ACSS2 gene. [5] [6]

Contents


Function

This gene encodes a cytosolic enzyme that catalyzes the activation of acetate for use in lipid synthesis and energy generation. The protein acts as a monomer and produces acetyl-CoA from acetate in a reaction that requires ATP. It is also essential for the production of Crotonyl-CoA which activates its target genes by crotonylation of histone tails. Expression of this gene is regulated by sterol regulatory element-binding proteins, transcription factors that activate genes required for the synthesis of cholesterol and unsaturated fatty acids. Two transcript variants encoding different isoforms have been found for this gene. [6]

Metabolic production of acetyl-CoA is linked to histone acetylation and gene regulation. In mouse neurons, Mews et al. [7] identified a major role for the ACSS2 pathway to regulate histone acetylation and neuronal gene expression. Histone acetylation in mature neurons is associated strongly with memory formation. Chromatin becomes acetylated in specific regions of the brain, such as the hippocampus, in response to neuronal activity or behavioral training in rodent. [8] Such acetylation correlates with the increased expression of a set of 'immediate early' genes, [9] which encode proteins that broadly mediate changes in the strength of connections between neurons, therefore facilitating memory consolidation. [10] In the mouse hippocampus, ACSS2 binds directly to immediate early genes to 'fuel' local histone acetylation and, in turn, their induction for long-term spatial memory.

Related Research Articles

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

<span class="mw-page-title-main">Histone deacetylase</span> Class of enzymes important in regulating DNA transcription

Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins.

Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.

<span class="mw-page-title-main">HDAC9</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.

<span class="mw-page-title-main">ELP3</span> Protein-coding gene in the species Homo sapiens

Elongator complex protein 3, also named KAT9, is a protein that in humans is encoded by the ELP3 gene. ELP3 is the catalytic histone acetyltransferase subunit of the RNA polymerase II elongator complex, which is a component of the RNA polymerase II holoenzyme and is involved in transcriptional elongation. ELP3 supports the migration and branching of projection neurons through acetylation of alpha-tubulin in the developing cerebral cortex. In mammals, ELP3 is important for paternal DNA demethylation after fertilization. ELP3 is potentially involved in cellular redox homeostasis by mediating the acetylation of glucose-6-phosphate dehydrogenase. Besides, ELP3 may play a role in chromatin remodeling and is involved in acetylation of histones H3 and probably H4.

<span class="mw-page-title-main">Sirtuin 3</span> Protein-coding gene in the species Homo sapiens

NAD-dependent deacetylase sirtuin-3, mitochondrial also known as SIRT3 is a protein that in humans is encoded by the SIRT3 gene [sirtuin 3 ]. SIRT3 is member of the mammalian sirtuin family of proteins, which are homologs to the yeast Sir2 protein. SIRT3 exhibits NAD+-dependent deacetylase activity.

<span class="mw-page-title-main">ELP4</span> Protein-coding gene in the species Homo sapiens

Elongation protein 4 homolog , also known as ELP4, is a protein which in humans is encoded by the ELP4 gene.

<span class="mw-page-title-main">HAT1</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase 1, also known as HAT1, is an enzyme that, in humans, is encoded by the HAT1 gene.

While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.

H3K27ac is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates acetylation of the lysine residue at N-terminal position 27 of the histone H3 protein.

H2BK5ac is an epigenetic modification to the DNA packaging protein Histone H2B. It is a mark that indicates the acetylation at the 5th lysine residue of the histone H2B protein. H2BK5ac is involved in maintaining stem cells and colon cancer.

H4K16ac is an epigenetic modification to the DNA packaging protein Histone H4. It is a mark that indicates the acetylation at the 16th lysine residue of the histone H4 protein.

H4K5ac is an epigenetic modification to the DNA packaging protein histone H4. It is a mark that indicates the acetylation at the 5th lysine residue of the histone H4 protein. H4K5 is the closest lysine residue to the N-terminal tail of histone H4. It is enriched at the transcription start site (TSS) and along gene bodies. Acetylation of histone H4K5 and H4K12ac is enriched at centromeres.

H4K8ac, representing an epigenetic modification to the DNA packaging protein histone H4, is a mark indicating the acetylation at the 8th lysine residue of the histone H4 protein. It has been implicated in the prevalence of malaria.

H4K12ac is an epigenetic modification to the DNA packaging protein histone H4. It is a mark that indicates the acetylation at the 12th lysine residue of the histone H4 protein. H4K12ac is involved in learning and memory. It is possible that restoring this modification could reduce age-related decline in memory.

H3K23ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 23rd lysine residue of the histone H3 protein.

H3K14ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 14th lysine residue of the histone H3 protein.

H3K9ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 9th lysine residue of the histone H3 protein.

H3K36ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 36th lysine residue of the histone H3 protein.

H3K56ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 56th lysine residue of the histone H3 protein.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000131069 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027605 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Luong A, Hannah VC, Brown MS, Goldstein JL (August 2000). "Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins". The Journal of Biological Chemistry. 275 (34): 26458–66. doi: 10.1074/jbc.M004160200 . PMID   10843999.
  6. 1 2 "Entrez Gene: ACSS2 acyl-CoA synthetase short-chain family member 2".
  7. Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL (May 2017). "Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory". Nature. 546 (7658): 381–386. Bibcode:2017Natur.546..381M. doi:10.1038/nature22405. PMC   5505514 . PMID   28562591.
  8. Schmitt M, Matthies H (1979). "[Biochemical studies on histones of the central nervous system. III. Incorporation of [14C]-acetate into the histones of different rat brain regions during a learning experiment]". Acta Biologica et Medica Germanica. 38 (4): 683–9. PMID   525146.
  9. Peixoto L, Abel T (January 2013). "The role of histone acetylation in memory formation and cognitive impairments". Neuropsychopharmacology. 38 (1): 62–76. doi:10.1038/npp.2012.86. PMC   3521994 . PMID   22669172.
  10. West AE, Greenberg ME (June 2011). "Neuronal activity-regulated gene transcription in synapse development and cognitive function". Cold Spring Harbor Perspectives in Biology. 3 (6): a005744. doi:10.1101/cshperspect.a005744. PMC   3098681 . PMID   21555405.

11. Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, Roeder RG, Allis CD(2015). Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 58(2):203-15

Further reading