ACTL6A

Last updated
ACTL6A
Identifiers
Aliases ACTL6A , ACTL6, ARPN-BETA, Arp4, BAF53A, INO80K, actin like 6A, SMARCN1
External IDs OMIM: 604958 MGI: 1861453 HomoloGene: 55811 GeneCards: ACTL6A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_178042
NM_004301
NM_177989

NM_019673

RefSeq (protein)

NP_004292
NP_817126
NP_829888

NP_062647

Location (UCSC) Chr 3: 179.56 – 179.59 Mb Chr 3: 32.76 – 32.78 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Actin-like protein 6A is a protein that in humans is encoded by the ACTL6A gene. [5] [6] [7]

Contents

Function

This gene encodes a family member of actin-related proteins (ARPs), which share significant amino acid sequence identity to conventional actins. Both actins and ARPs have an actin fold, which is an ATP-binding cleft, as a common feature. The ARPs are involved in diverse cellular processes, including vesicular transport, spindle orientation, nuclear migration and chromatin remodeling. This gene encodes a 53 kDa subunit protein of the BAF (BRG1/brm-associated factor) complex in mammals, which is functionally related to SWI/SNF complex in S. cerevisiae and Drosophila ; the latter is thought to facilitate transcriptional activation of specific genes by antagonizing chromatin-mediated transcriptional repression. Together with beta-actin, it is required for maximal ATPase activity of BRG1, and for the association of the BAF complex with chromatin/matrix. Three transcript variants that encode two different protein isoforms have been described. [7]

Clinical significance

ACTL6A is amplified in head and squamous cancers and confers poor prognosis in patients. [8] In hepatocellular carcinomas, it promotes metastasis. [9]

Interactions

ACTL6A has been shown to interact with SMARCA2, [10] [11] [12] Myc, [11] Transformation/transcription domain-associated protein, [11] RuvB-like 1 [11] and SMARCA4. [5] [10]

Related Research Articles

RSC is a member of the ATP-dependent chromatin remodeler family. The activity of the RSC complex allows for chromatin to be remodeled by altering the structure of the nucleosome.

<span class="mw-page-title-main">SWI/SNF</span> Subfamily of ATP-dependent chromatin remodeling complexes

In molecular biology, SWI/SNF, is a subfamily of ATP-dependent chromatin remodeling complexes, which is found in eukaryotes. In other words, it is a group of proteins that associate to remodel the way DNA is packaged. This complex is composed of several proteins – products of the SWI and SNF genes, as well as other polypeptides. It possesses a DNA-stimulated ATPase activity that can destabilize histone-DNA interactions in reconstituted nucleosomes in an ATP-dependent manner, though the exact nature of this structural change is unknown. The SWI/SNF subfamily provides crucial nucleosome rearrangement, which is seen as ejection and/or sliding. The movement of nucleosomes provides easier access to the chromatin, allowing genes to be activated or repressed.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">POLR2A</span> Protein-coding gene in the species Homo sapiens

DNA-directed RNA polymerase II subunit RPB1, also known as RPB1, is an enzyme that is encoded by the POLR2A gene in humans.

<span class="mw-page-title-main">SMARCA4</span> Protein-coding gene in the species Homo sapiens

Transcription activator BRG1 also known as ATP-dependent chromatin remodeler SMARCA4 is a protein that in humans is encoded by the SMARCA4 gene.

<span class="mw-page-title-main">Transformation/transcription domain-associated protein</span> Protein-coding gene in the species Homo sapiens

Transformation/transcription domain-associated protein, also known as TRRAP, is a protein that in humans is encoded by the TRRAP gene. TRRAP belongs to the phosphatidylinositol 3-kinase-related kinase protein family.

<span class="mw-page-title-main">SMARCB1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 is a protein that in humans is encoded by the SMARCB1 gene.

<span class="mw-page-title-main">SMARCA2</span> Protein-coding gene in the species Homo sapiens

Probable global transcription activator SNF2L2 is a protein that in humans is encoded by the SMARCA2 gene.

<span class="mw-page-title-main">SMARCA5</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 is a protein that in humans is encoded by the SMARCA5 gene.

<span class="mw-page-title-main">ARID1A</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 1A is a protein that in humans is encoded by the ARID1A gene.

<span class="mw-page-title-main">SMARCC1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF complex subunit SMARCC1 is a protein that in humans is encoded by the SMARCC1 gene.

<span class="mw-page-title-main">SMARCE1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 is a protein that in humans is encoded by the SMARCE1 gene.

<span class="mw-page-title-main">SMARCC2</span> Protein-coding gene in the species Homo sapiens

SWI/SNF complex subunit SMARCC2 is a protein that in humans is encoded by the SMARCC2 gene.

<span class="mw-page-title-main">ARID1B</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 1B is a protein that in humans is encoded by the ARID1B gene. ARID1B is a component of the human SWI/SNF chromatin remodeling complex.

<span class="mw-page-title-main">SMARCD1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 is a protein that in humans is encoded by the SMARCD1 gene.

<span class="mw-page-title-main">PBRM1</span> Protein-coding gene in the species Homo sapiens

Protein polybromo-1 (PB1) also known as BRG1-associated factor 180 (BAF180) is a protein that in humans is encoded by the PBRM1 gene.

<span class="mw-page-title-main">ARID2</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 2 (ARID2) is a protein that in humans is encoded by the ARID2 gene.

<span class="mw-page-title-main">SMARCD3</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3 is a protein that in humans is encoded by the SMARCD3 gene.

<span class="mw-page-title-main">ACTL6B</span> Protein-coding gene in the species Homo sapiens

Actin-like protein 6B is a protein that in humans is encoded by the ACTL6B gene.

<span class="mw-page-title-main">SMARCD2</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 2 is a protein that in humans is encoded by the SMARCD2 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000136518 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027671 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (December 1998). "Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling". Cell. 95 (5): 625–36. doi: 10.1016/S0092-8674(00)81633-5 . PMID   9845365. S2CID   3184211.
  6. Harata M, Mochizuki R, Mizuno S (July 1999). "Two isoforms of a human actin-related protein show nuclear localization and mutually selective expression between brain and other tissues". Biosci Biotechnol Biochem. 63 (5): 917–23. doi: 10.1271/bbb.63.917 . PMID   10380635.
  7. 1 2 "Entrez Gene: ACTL6A actin-like 6A".
  8. Saladi SV, Ross K, Karaayvaz M, Tata PR, Mou H, Rajagopal J, Ramaswamy S, Ellisen LW (2017). "ACTL6A Is Co-Amplified with p63 in Squamous Cell Carcinoma to Drive YAP Activation, Regenerative Proliferation, and Poor Prognosis". Cancer Cell. 31 (1): 35–49. doi:10.1016/j.ccell.2016.12.001. PMC   5225026 . PMID   28041841.
  9. Xiao S, Chang RM, Yang MY, Lei X, Liu X, Gao WB, Xiao JL, Yang LY (2016). "Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-mesenchymal transition". Hepatology. 63 (4): 1256–71. doi:10.1002/hep.28417. PMC   4834727 . PMID   26698646.
  10. 1 2 Wang W, Côté J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, Crabtree GR (October 1996). "Purification and biochemical heterogeneity of the mammalian SWI-SNF complex". EMBO J. 15 (19): 5370–82. doi:10.1002/j.1460-2075.1996.tb00921.x. PMC   452280 . PMID   8895581.
  11. 1 2 3 4 Park J, Wood MA, Cole MD (March 2002). "BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation". Mol. Cell. Biol. 22 (5): 1307–16. doi:10.1128/MCB.22.5.1307-1316.2002. PMC   134713 . PMID   11839798.
  12. Kuroda Y, Oma Y, Nishimori K, Ohta T, Harata M (November 2002). "Brain-specific expression of the nuclear actin-related protein ArpNalpha and its involvement in mammalian SWI/SNF chromatin remodeling complex". Biochem. Biophys. Res. Commun. 299 (2): 328–34. doi:10.1016/S0006-291X(02)02637-2. PMID   12437990.

Further reading