Abderhalden's drying pistol

Last updated
Abderhalden's drying pistol. Note the inner barrel (to be connected to the vacuum source), and the outer barrel connected to the pot. The condenser is not attached. Abderhalden drying pistol.jpg
Abderhalden's drying pistol. Note the inner barrel (to be connected to the vacuum source), and the outer barrel connected to the pot. The condenser is not attached.

Abderhalden's drying pistol is a piece of laboratory glassware used to free samples from traces of water, or other impurities. It is called a "pistol" because of its resemblance to the firearm. Its use has declined due to modern hotplate technology and vacuum pumps. The apparatus was first described in a book edited by Emil Abderhalden. [1] The drying pistol allows the sample to be dried at elevated temperature; this is especially preferred when storage in a desiccator at room temperature does not give satisfactory results. [2]

Operation

The drying pistol consists of two concentric barrels; the inner is connected to a vacuum source via a trap. [3] The outer barrel is connected at the bottom to a round bottom flask, and a condenser. To operate the drying pistol, a sample is placed within the inner barrel, and the barrel is evacuated. The round bottom flask, filled with an appropriate solvent, is heated to a boil. Hot vapors warm the inner barrel; losses are avoided with the condenser. By choosing the appropriate solvent, the temperature at which the sample is dried can be selected.

The trap is filled with an appropriate material: water is removed with phosphorus pentoxide, acidic gases by potassium or sodium hydroxide, and organic solvents by thin pieces of paraffin. However, the use of these agents has been shown to have little efficacy. Generally, the main impurity to be removed is water. [2] [4]

This set-up allows the desiccation of heat-sensitive compounds under relatively mild conditions. Removing these trace impurities is especially important to give good results for elemental analysis and gravimetric analysis.

Related Research Articles

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.

<span class="mw-page-title-main">Laboratory glassware</span> Variety of equipment usually made of glass used for scientific experiments

Laboratory glassware is a variety of equipment used in scientific work, traditionally made of glass. Glass may be blown, bent, cut, molded, or formed into many sizes and shapes. It is commonly used in chemistry, biology, and analytical laboratories. Many laboratories have training programs to demonstrate how glassware is used and to alert first–time users to the safety hazards involved with using glassware.

<span class="mw-page-title-main">Desiccator</span> Sealable enclosures containing desiccants to preserve moisture-sensitive items

Desiccators are sealable enclosures containing desiccants used for preserving moisture-sensitive items such as cobalt chloride paper for another use. A common use for desiccators is to protect chemicals which are hygroscopic or which react with water from humidity.

<span class="mw-page-title-main">Rotary evaporator</span> Device used in chemical laboratories

A rotary evaporator (rotovap) is a device used in chemical laboratories for the efficient and gentle removal of solvents from samples by evaporation. When referenced in the chemistry research literature, description of the use of this technique and equipment may include the phrase "rotary evaporator", though use is often rather signaled by other language.

<span class="mw-page-title-main">Soxhlet extractor</span> Laboratory apparatus

A Soxhlet extractor is a piece of laboratory apparatus invented in 1879 by Franz von Soxhlet. It was originally designed for the extraction of a lipid from a solid material. Typically, Soxhlet extraction is used when the desired compound has a limited solubility in a solvent, and the impurity is insoluble in that solvent. It allows for unmonitored and unmanaged operation while efficiently recycling a small amount of solvent to dissolve a larger amount of material.

<span class="mw-page-title-main">Cold trap</span> Device that condenses specific vapors and gases

In vacuum applications, a cold trap is a device that condenses all vapors except the permanent gases into a liquid or solid. The most common objective is to prevent vapors being evacuated from an experiment from entering a vacuum pump where they would condense and contaminate it. Particularly large cold traps are necessary when removing large amounts of liquid as in freeze drying.

<span class="mw-page-title-main">Vacuum oven</span>

In chemistry, a vacuum oven is an oven that can also apply a vacuum to its contents. Such devices are useful for removing solvent or dehydrating samples. They are equivalent to Abderhalden's drying pistol in some ways, but vacuum ovens typically can accommodate large samples. A characteristic operation for a vacuum oven is the activation or regeneration of molecular sieves. Vacuum furnaces are related devices that operate at much higher temperatures and much lower pressures.

<span class="mw-page-title-main">Laboratory flask</span> Type of laboratory glassware

Laboratory flasks are vessels or containers that fall into the category of laboratory equipment known as glassware. In laboratory and other scientific settings, they are usually referred to simply as flasks. Flasks come in a number of shapes and a wide range of sizes, but a common distinguishing aspect in their shapes is a wider vessel "body" and one narrower tubular sections at the top called necks which have an opening at the top. Laboratory flask sizes are specified by the volume they can hold, typically in metric units such as milliliters or liters. Laboratory flasks have traditionally been made of glass, but can also be made of plastic.

The Marcusson apparatus, Dean-Stark apparatus, Dean–Stark receiver, distilling trap, or Dean–Stark Head is a piece of laboratory glassware used in synthetic chemistry to collect water from a reactor. It is used in combination with a reflux condenser and a distillation flask for the separation of water from liquids. This may be a continuous removal of the water that is produced during a chemical reaction performed at reflux temperature, such as in esterification reactions. The original setup by Julius Marcusson was refined by the American chemists Ernest Woodward Dean (1888–1959) and David Dewey Stark (1893–1979) in 1920 for determination of the water content in petroleum.

<span class="mw-page-title-main">Round-bottom flask</span> Laboratory equipment

Round-bottom flasks are types of flasks having spherical bottoms used as laboratory glassware, mostly for chemical or biochemical work. They are typically made of glass for chemical inertness; and in modern days, they are usually made of heat-resistant borosilicate glass. There is at least one tubular section known as the neck with an opening at the tip. Two- or three-necked flasks are common as well. Round bottom flasks come in many sizes, from 5 mL to 20 L, with the sizes usually inscribed on the glass. In pilot plants even larger flasks are encountered.

<span class="mw-page-title-main">Schlenk line</span> Glass apparatus used in chemistry

The Schlenk line is a commonly used chemistry apparatus developed by Wilhelm Schlenk. It consists of a dual manifold with several ports. One manifold is connected to a source of purified inert gas, while the other is connected to a vacuum pump. The inert-gas line is vented through an oil bubbler, while solvent vapors and gaseous reaction products are prevented from contaminating the vacuum pump by a liquid-nitrogen or dry-ice/acetone cold trap. Special stopcocks or Teflon taps allow vacuum or inert gas to be selected without the need for placing the sample on a separate line.

<span class="mw-page-title-main">Schlenk flask</span> Reaction vessel used in air-sensitive chemistry

A Schlenk flask, or Schlenk tube, is a reaction vessel typically used in air-sensitive chemistry, invented by Wilhelm Schlenk. It has a side arm fitted with a PTFE or ground glass stopcock, which allows the vessel to be evacuated or filled with gases. These flasks are often connected to Schlenk lines, which allow both operations to be done easily.

<span class="mw-page-title-main">Ground glass joint</span> Used in laboratories to easily assemble apparatus from parts

Ground glass joints are used in laboratories to quickly and easily fit leak-tight apparatus together from interchangeable commonly available parts. For example, a round bottom flask, Liebig condenser, and oil bubbler with ground glass joints may be rapidly fitted together to reflux a reaction mixture. This is a large improvement compared with older methods of custom-made glassware, which was time-consuming and expensive, or the use of less chemical resistant and heat resistant corks or rubber bungs and glass tubes as joints, which took time to prepare as well.

<span class="mw-page-title-main">NMR tube</span> Laboratory glassware

An NMR tube is a thin glass walled tube used to contain samples in nuclear magnetic resonance spectroscopy. Typically NMR tubes come in 5 mm diameters but 10 mm and 3 mm samples are known. It is important that the tubes are uniformly thick and well-balanced to ensure that NMR tube spins at a regular rate, usually about 20 Hz in the NMR spectrometer.

In chemistry, work-up refers to the series of manipulations required to isolate and purify the product(s) of a chemical reaction. The term is used colloquially to refer to these manipulations, which may include:

<span class="mw-page-title-main">Condenser (laboratory)</span> Laboratory apparatus used to condense vapors

In chemistry, a condenser is laboratory apparatus used to condense vapors – that is, turn them into liquids – by cooling them down.

Air-free techniques refer to a range of manipulations in the chemistry laboratory for the handling of compounds that are air-sensitive. These techniques prevent the compounds from reacting with components of air, usually water and oxygen; less commonly carbon dioxide and nitrogen. A common theme among these techniques is the use of a fine (100–10−3 Torr) or high (10−3–10−6 Torr) vacuum to remove air, and the use of an inert gas: preferably argon, but often nitrogen.

<span class="mw-page-title-main">Cannula transfer</span>

Cannula transfer or cannulation is a set of air-free techniques used with a Schlenk line, in transferring liquid or solution samples between reaction vessels via cannulae, avoiding atmospheric contamination. While the syringes are not the same as cannulae, the techniques remain relevant.

<span class="mw-page-title-main">Reflux</span> Condensation of vapors and their return to where they originated

Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial and laboratory distillations. It is also used in chemistry to supply energy to reactions over a long period of time.

<span class="mw-page-title-main">Recrystallization (chemistry)</span> Separation and purification process of crystalline solids

In chemistry, recrystallization is a technique used to purify chemicals. By dissolving a mixture of a compound and impurities in an appropriate solvent, the desired compound or impurities can be removed from the solution, leaving the other behind. The name originates from the crystals often formed when the compound precipitates out. Alternatively, recrystallization can refer to the natural growth of larger ice crystals at the expense of smaller ones.

References

  1. Sella, Andrea (February 2009). "Classic Kit: Abderhalden's drying pistol". Chemistry World. Royal Society of Chemistry.
  2. 1 2 Dawkins, Linda M.; Shugar, Gershon J.; Ballinger, Jack T. (1996). Chemical technicians' ready reference handbook (Google Books excerpt). New York: McGraw-Hill. pp. 311–312.
  3. Harwood, Laurence M.; Moody, Christopher J. (13 Jun 1989). Experimental organic chemistry: Principles and Practice (Illustrated ed.). WileyBlackwell. pp.  136–137. ISBN   978-0-632-02017-1.
  4. Chai, Christina Li Lin; Armarego, W. L. F. (2003). Purification of laboratory chemicals (Google Books excerpt). Oxford: Butterworth-Heinemann. pp. 25–26. ISBN   0-7506-7571-3.