Skin absorption is a route by which substances can enter the body through the skin. Along with inhalation, ingestion and injection, dermal absorption is a route of exposure for toxic substances and route of administration for medication. Absorption of substances through the skin depends on a number of factors, the most important of which are concentration, duration of contact, solubility of medication, and physical condition of the skin and part of the body exposed.
Skin (percutaneous, dermal) absorption is the transport of chemicals from the outer surface of the skin both into the skin and into circulation. Skin absorption relates to the degree of exposure to and possible effect of a substance which may enter the body through the skin. Human skin comes into contact with many agents intentionally and unintentionally. Skin absorption can occur from occupational, environmental, or consumer skin exposure to chemicals, cosmetics, or pharmaceutical products. Some chemicals can be absorbed in enough quantity to cause detrimental systemic effects. Skin disease (dermatitis) is considered one of the most common occupational diseases. [1] In order to assess if a chemical can be a risk of either causing dermatitis or other more systemic effects and how that risk may be reduced, one must know the extent to which it is absorbed. Thus, dermal exposure is a key aspect of human health risk assessment.
Along with inhalation, ingestion and injection, dermal absorption is a route of exposure for bioactive substances including medications. [2] Absorption of substances through the skin depends on a number of factors:
In general, the rate of absorption of chemicals through skin follows the following scheme from fastest to slowest: Scrotal > Forehead > Armpit ≥ Scalp > Back = Abdomen > Palm = under surface of the foot. [4]
To be absorbed through the skin, a chemical must pass through the epidermis, glands, or hair follicles. Sweat glands and hair follicles make up about 0.1 to 1.0 percent of the total skin surface. [2] Though small amounts of chemicals may enter the body rapidly through the glands or hair follicles, they are primarily absorbed through the epidermis. Chemicals must pass through the seven cell layers of epidermis before entering the dermis where they can enter the blood stream or lymph and circulate to other areas of the body. Toxins and toxicants can move through the layers by passive diffusion. The stratum corneum is the outermost layer of the epidermis and the rate-limiting barrier in absorption of an agent. [4] Thus, how quickly something passes through this thicker outer layer determines the overall absorption. The stratum corneum is primarily composed of lipophilic cholesterol, cholesterol esters and ceramides. Thus lipid-soluble chemicals make it through the layer and into the circulation faster, however nearly all molecules penetrate it to some minimal degree. [5] [6] Absorption of chemicals in municipal water and dental products such as VOC (Volatile Organic Compounds), TTHM (Total Trihalomethanes), fluoride and disinfectants is a major exposure to environmental health hazards. [7] [8] [9]
Agents that injure the stratum corneum, such as strong acids, are absorbed faster than chemicals that do not. [10] Skin damage due to burns, abrasions, wounds and skin diseases also increase absorption. Thus populations with skin damage may be more susceptible to adverse effects of agents that are absorbed through the skin. Certain solvents like dimethyl sulfoxide (DMSO) act as carriers and are frequently used to transport medication through the skin. DMSO increases the permeability of the stratum corneum. [11] [12] Surfactants like sodium lauryl-sulfate increase the skin penetration of water-soluble substances, possibly by increasing the skin permeability of water. [11]
Dermal application of a medication or chemical allows treatment to be localized, unlike ingestion or injection. Some medications seem to be more effective (or are more efficient) using the dermal route of administration. Some ingested drugs are heavily metabolized by the liver and may be inactivated, but using a dermal application bypasses this metabolic step allowing more parent compounds to enter the peripheral circulation. If a drug is absorbed well through the skin it may be used as a means of systemic medication. Dermal dosage forms include: liniments, braces, lotions, ointments, creams, dusting powders, aerosols, and transdermal patches. [13] Specially designed patches are currently used to deliver fentanyl, nicotine and other compounds. Slower skin absorption versus oral or injectable may allow patches to provide medication for 1 to 7 days. [14] For instance nitroglycerin given transdermally may provide hours of protection against angina whereas the duration of effect sublingually may only be minutes. [15]
The amount of chemical that is absorbed through the skin can be measured directly or indirectly. [16] Studies have shown there are species with differences in the absorption of different chemicals. Measurements in rats, rabbits or pigs may or may not reflect human absorption. [10] Finding the rate at which agents penetrate the skin is important for assessing the risk from exposures.
The transit of chemicals into the skin can be directly measured using non-invasive optical techniques with molecular specificity, such as Confocal Raman Spectroscopy. This technique is able to identify unique spectra of molecules and compare to background skin spectra whilst limiting measurement regions using confocal gating, achieving depth-resolved concentration measurement. A single measurement sequence can thereby establish a snapshot profile of chemical concentration against depth inside the skin. By repeating the measurement at multiple timepoints, a dynamic concentration-at-depth profile is determined. Since modern Raman Spectrometers exhibit extremely high SNR, in-vivo absorption testing in human skin is possible on a scale of a few minutes or hours.
A chemical may also be directly applied to the skin followed by blood and urine measurements, at set time points after the application, to assess the amount of chemical that entered the body. The concentration in the blood or urine at particular time points can be graphed to show an area under the curve and the extent and duration of absorption and distribution to provide a measure of systemic absorption. This can be done in animals or humans with a dry chemical powder or a chemical in solution. [17] Rats are commonly used for these experiments. An area of skin is shaved before the chemical is applied. Often the area of chemical application is covered to prevent ingestion or rubbing off of the test material. Samples of blood and urine are taken at specific time intervals following application (0.5, 1, 2, 4, 10, and 24 hours) and in some protocols at the chosen end time the animal maybe necropsied. Tissue samples may also be evaluated for the presence of the test chemical. [18] In some test protocols many animals may be tested and necropsies may occur at set intervals after exposure. Biomonitoring, such as taking urine samples at intervals, from workers exposed to chemicals may provide some information but it is difficult to distinguish dermal from inhalation exposure using this method.
The permeability properties of the stratum corneum are, for the most part, unchanged after its removal from the body. [18] Skin that has been removed carefully from animals may also be used to see the extent of local penetration by putting it in a chamber and applying the chemical on one side and then measuring the amount of chemical that gets into a fluid on the other side. [14] One example of this ex vivo technique is the isolated perfused porcine flap. [4] This method was first described in 1986 as a humane alternative to in vivo animal testing. [19]
Techniques such as static diffusion cells (Franz cells) and flow-through diffusion cells (Bronaugh cells) have also been used. [4] The Franz Cell apparatus consists of two chambers separated by a membrane of animal or human skin. Human skin is preferred but due to ethical and other considerations is not always available. Human skin often may come from autopsies or plastic surgeries. [20] The test product is applied to the membrane via the top chamber. The bottom chamber contains fluid from which samples are taken at regular intervals for analysis to determine the amount of active cells that has permeated the membrane at set time points.
Bronaugh cells are similar to Franz cells but use a flow-through system beneath the membrane layer and samples of the liquid below are taken continuously rather than at set time points. [21] Bronaugh cells have been replaced with inline cells by some manufacturers.
It is sometimes impossible for humane reasons to apply a drug to the skin and measure its absorption. Sarin, a nerve gas, can be absorbed through intact skin and be lethal at low concentrations. Thus if one needs to assess the risk of Sarin exposure one must take skin absorption and other routes into account but one cannot ethically test Sarin on human subjects; thus ways of modeling the risk from skin exposure of the agent have been found.
Models are used in some instances to predict the amount of exposure or absorption and to assess public health hazards. In order to assess the risk of a chemical causing a health issue one must assess the chemical and the exposure. Exposure modeling depends on several factors and assumptions.
If skin exposure and absorption are deemed to indicate a risk, various methods to reduce absorption can be undertaken.
Coal tar is a thick dark liquid which is a by-product of the production of coke and coal gas from coal. It is a type of creosote. It has both medical and industrial uses. Medicinally it is a topical medication applied to skin to treat psoriasis and seborrheic dermatitis (dandruff). It may be used in combination with ultraviolet light therapy. Industrially it is a railroad tie preservative and used in the surfacing of roads. Coal tar was listed as a known human carcinogen in the first Report on Carcinogens from the U.S. Federal Government, issued in 1980.
Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation.
The integumentary system is the set of organs forming the outermost layer of an animal's body. It comprises the skin and its appendages, which act as a physical barrier between the external environment and the internal environment that it serves to protect and maintain the body of the animal. Mainly it is the body's outer skin.
Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). Sometimes the word is more or less synonymous with poisoning in everyday usage.
The epidermis is the outermost of the three layers that comprise the skin, the inner layers being the dermis and hypodermis. The epidermis layer provides a barrier to infection from environmental pathogens and regulates the amount of water released from the body into the atmosphere through transepidermal water loss.
In pharmacology and toxicology, a route of administration is the way by which a drug, fluid, poison, or other substance is taken into the body.
A topical medication is a medication that is applied to a particular place on or in the body. Most often topical medication means application to body surfaces such as the skin or mucous membranes to treat ailments via a large range of classes including creams, foams, gels, lotions, and ointments. Many topical medications are epicutaneous, meaning that they are applied directly to the skin. Topical medications may also be inhalational, such as asthma medications, or applied to the surface of tissues other than the skin, such as eye drops applied to the conjunctiva, or ear drops placed in the ear, or medications applied to the surface of a tooth. The word topical derives from Greek τοπικόςtopikos, "of a place".
The stratum corneum is the outermost layer of the epidermis. Consisting of dead tissue, it protects underlying tissue from infection, dehydration, chemicals and mechanical stress. It is composed of 15–20 layers of flattened cells with no nuclei and cell organelles.
Physiologically based pharmacokinetic (PBPK) modeling is a mathematical modeling technique for predicting the absorption, distribution, metabolism and excretion (ADME) of synthetic or natural chemical substances in humans and other animal species. PBPK modeling is used in pharmaceutical research and drug development, and in health risk assessment for cosmetics or general chemicals.
Environmental hazards are those hazards that affect biomes or ecosystems. Well known examples include oil spills, water pollution, slash and burn deforestation, air pollution, ground fissures, and build-up of atmospheric carbon dioxide. Physical exposure to environmental hazards is usually involuntary
Homosalate is an organic compound used in some sunscreens. It is made by the Fischer–Speier esterification of salicylic acid and 3,3,5-trimethylcyclohexanol, the latter being a hydrogenated derivative of isophorone. Contained in 45% of U.S. sunscreens, it is used as a chemical UV filter. The salicylic acid portion of the molecule absorbs ultraviolet rays with a wavelength from 295 nm to 315 nm, protecting the skin from sun damage. The hydrophobic trimethyl cyclohexyl group provides greasiness that prevents it from dissolving in water.
Absorption is the journey of a drug travelling from the site of administration to the site of action.
Sonophoresis also known as phonophoresis, is a method that utilizes ultrasound to enhance the delivery of topical medications through the stratum corneum, to the epidermis and dermis. Sonophoresis allows for the enhancement of the permeability of the skin along with other modalities, such as iontophoresis, to deliver drugs with lesser side effects. Currently, sonophoresis is used widely in transdermal drug delivery, but has potential applications in other sectors of drug delivery, such as the delivery of drugs to the eye and brain.
Exposure assessment is a branch of environmental science and occupational hygiene that focuses on the processes that take place at the interface between the environment containing the contaminant of interest and the organism being considered. These are the final steps in the path to release an environmental contaminant, through transport to its effect in a biological system. It tries to measure how much of a contaminant can be absorbed by an exposed target organism, in what form, at what rate and how much of the absorbed amount is actually available to produce a biological effect. Although the same general concepts apply to other organisms, the overwhelming majority of applications of exposure assessment are concerned with human health, making it an important tool in public health.
The human skin is the outer covering of the body and is the largest organ of the integumentary system. The skin has up to seven layers of ectodermal tissue guarding muscles, bones, ligaments and internal organs. Human skin is similar to most of the other mammals' skin, and it is very similar to pig skin. Though nearly all human skin is covered with hair follicles, it can appear hairless. There are two general types of skin: hairy and glabrous skin (hairless). The adjective cutaneous literally means "of the skin".
Transdermal is a route of administration wherein active ingredients are delivered across the skin for systemic distribution. Examples include transdermal patches used for medicine delivery. The drug is administered in the form of a patch or ointment that delivers the drug into the circulation for systemic effect.
Corneocytes are terminally differentiated keratinocytes and compose most of the stratum corneum, the outermost layer of the epidermis. They are regularly replaced through desquamation and renewal from lower epidermal layers and are essential for its function as a skin barrier.
Topical cream formulation is an emulsion semisolid dosage form that is used for skin external application. Most of the topical cream formulations contain more than 20 per cent of water and volatiles and/or less than 50 per cent of hydrocarbons, waxes, or polyethylene glycols as the vehicle for external skin application. In a topical cream formulation, ingredients are dissolved or dispersed in either a water-in-oil (W/O) emulsion or an oil-in-water (O/W) emulsion. The topical cream formulation has a higher content of oily substance than gel, but a lower content of oily ingredient than ointment. Therefore, the viscosity of topical cream formulation lies between gel and ointment. The pharmacological effect of the topical cream formulation is confined to the skin surface or within the skin. Topical cream formulation penetrates through the skin by transcellular route, intercellular route, or trans-appendageal route. Topical cream formulation is used for a wide range of diseases and conditions, including atopic dermatitis (eczema), psoriasis, skin infection, acne, and wart. Excipients found in a topical cream formulation include thickeners, emulsifying agents, preservatives, antioxidants, and buffer agents. Steps required to manufacture a topical cream formulation include excipient dissolution, phase mixing, introduction of active substances, and homogenization of the product mixture.
Topical drug delivery (TDD) is a route of drug administration that allows the topical formulation to be delivered across the skin upon application, hence producing a localized effect to treat skin disorders like eczema. The formulation of topical drugs can be classified into corticosteroids, antibiotics, antiseptics, and anti-fungal. The mechanism of topical delivery includes the diffusion and metabolism of drugs in the skin. Historically, topical route was the first route of medication used to deliver drugs in humans in ancient Egyptian and Babylonian in 3000 BCE. In these ancient cities, topical medications like ointments and potions were used on the skin. The delivery of topical drugs needs to pass through multiple skin layers and undergo pharmacokinetics, hence factor like dermal diseases minimize the bioavailability of the topical drugs. The wide use of topical drugs leads to the advancement in topical drug delivery. These advancements are used to enhance the delivery of topical medications to the skin by using chemical and physical agents. For chemical agents, carriers like liposomes and nanotechnologies are used to enhance the absorption of topical drugs. On the other hand, physical agents, like micro-needles is other approach for enhancement ofabsorption. Besides using carriers, other factors such as pH, lipophilicity, and drug molecule size govern the effectiveness of topical formulation.
An invasome is a type of artificial vesicle nanocarrier that transport substances through the skin, the most superficial biological barrier. Vesicles are small particles surrounded by a lipid layer that can carry substances into and out of the cell. Artificial vesicles can be engineered to deliver drugs within the cell, with specific applications within transdermal drug delivery. However, the skin proves to be a barrier to effective penetration and delivery of drug therapies. Thus, invasomes are a new generation of vesicle with added structural components to assist with skin penetration.