Actagardin

Last updated
Actagardin
Gardimycin.svg
Names
Systematic IUPAC name
(2R,5S,8R,11S,14S,17R,23R,26R,32R,35S,38R,41R,44R)-44-{(2S,3S)-2-[(2R)-2-{(2S)-2-[(2R)-2-Aminopropanamido]-4-methylpentanamido}butanamido]-3-methylpentanamido}-11-[(2S)-butan-2-yl]-17,41-diethyl-26-(hydroxymethyl)-32-[(1H-indol-3-yl)methyl]-2,5,8,23,38-pentamethyl-4,7,10,13,16,19,22,25,28,31,34,38,40,43-tetradecaoxo-14,35-di(propan-2-yl)-3,6,9,12,15,18,21,24,27,30,33,37,39,42-tetradecaazaheptatetracontanedioic acid
Other names
Gardimycin
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C81H132N20O23/c1-20-40(12)63(79(121)89-45(17)67(109)86-44(16)68(110)90-47(19)81(123)124)101-78(120)62(39(10)11)99-72(114)50(22-3)91-58(103)34-84-66(108)43(15)87-76(118)57(36-102)92-59(104)35-85-70(112)56(32-48-33-83-53-28-26-25-27-49(48)53)97-77(119)61(38(8)9)98-69(111)46(18)88-71(113)51(23-4)93-74(116)54(29-30-60(105)106)95-80(122)64(41(13)21-2)100-73(115)52(24-5)94-75(117)55(31-37(6)7)96-65(107)42(14)82/h25-28,33,37-47,50-52,54-57,61-64,83,102H,20-24,29-32,34-36,82H2,1-19H3,(H,84,108)(H,85,112)(H,86,109)(H,87,118)(H,88,113)(H,89,121)(H,90,110)(H,91,103)(H,92,104)(H,93,116)(H,94,117)(H,95,122)(H,96,107)(H,97,119)(H,98,111)(H,99,114)(H,100,115)(H,101,120)(H,105,106)(H,123,124)/t40-,41-,42+,43+,44-,45+,46+,47+,50+,51+,52+,54+,55-,56+,57+,61-,62-,63-,64-/m0/s1
    Key: LAWKVNVCUPIOMG-HWWYPGLISA-N
  • InChI=1/C81H132N20O23/c1-20-40(12)63(79(121)89-45(17)67(109)86-44(16)68(110)90-47(19)81(123)124)101-78(120)62(39(10)11)99-72(114)50(22-3)91-58(103)34-84-66(108)43(15)87-76(118)57(36-102)92-59(104)35-85-70(112)56(32-48-33-83-53-28-26-25-27-49(48)53)97-77(119)61(38(8)9)98-69(111)46(18)88-71(113)51(23-4)93-74(116)54(29-30-60(105)106)95-80(122)64(41(13)21-2)100-73(115)52(24-5)94-75(117)55(31-37(6)7)96-65(107)42(14)82/h25-28,33,37-47,50-52,54-57,61-64,83,102H,20-24,29-32,34-36,82H2,1-19H3,(H,84,108)(H,85,112)(H,86,109)(H,87,118)(H,88,113)(H,89,121)(H,90,110)(H,91,103)(H,92,104)(H,93,116)(H,94,117)(H,95,122)(H,96,107)(H,97,119)(H,98,111)(H,99,114)(H,100,115)(H,101,120)(H,105,106)(H,123,124)/t40-,41-,42+,43+,44-,45+,46+,47+,50+,51+,52+,54+,55-,56+,57+,61-,62-,63-,64-/m0/s1
    Key: LAWKVNVCUPIOMG-HWWYPGLIBM
  • CC[C@H](C)[C@@H](C(=O)N[C@H](CCC(=O)O)C(=O)N[C@H](CC)C(=O)N[C@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](CC1=CNC2=CC=CC=C21)C(=O)NCC(=O)N[C@H](CO)C(=O)N[C@H](C)C(=O)NCC(=O)N[C@H](CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C)C(=O)N[C@@H](C)C(=O)N[C@H](C)C(=O)O)NC(=O)[C@@H](CC)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](C)N
Properties
C81H132N20O23
Molar mass 1754.064 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Actagardin (INN; also known as gardimycin) is a tetracyclic [1] peptide lantibiotic made by Actinoplanes brasiliensis . [2] It was discovered in 1975 by Lepetit S.p.A. [3] Its method of antibiotic activity involves the inhibition of peptidoglycan, preferentially targeting gram negative bacteria. [1]

Related Research Articles

Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like peptidoglycan layer outside the plasma membrane, the rigid cell wall characteristic of most bacteria. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

<span class="mw-page-title-main">Beta-lactam antibiotics</span> Class of broad-spectrum antibiotics

β-lactam antibiotics are antibiotics that contain a beta-lactam ring in their chemical structure. This includes penicillin derivatives (penams), cephalosporins and cephamycins (cephems), monobactams, carbapenems and carbacephems. Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism and are the most widely used group of antibiotics. Until 2003, when measured by sales, more than half of all commercially available antibiotics in use were β-lactam compounds. The first β-lactam antibiotic discovered, penicillin, was isolated from a strain of Penicillium rubens.

Lantibiotics are a class of polycyclic peptide antibiotics that contain the characteristic thioether amino acids lanthionine or methyllanthionine, as well as the unsaturated amino acids dehydroalanine, and 2-aminoisobutyric acid. They belong to ribosomally synthesized and post-translationally modified peptides.

<span class="mw-page-title-main">Cephalosporin</span> Class of pharmaceutical drugs

The cephalosporins are a class of β-lactam antibiotics originally derived from the fungus Acremonium, which was previously known as Cephalosporium.

<span class="mw-page-title-main">Bacitracin</span> Polypeptide Antibiotic (Gram Positive Bacteriacide)

Bacitracin is a polypeptide antibiotic. It is a mixture of related cyclic peptides produced by Bacillus licheniformis bacteria, that was first isolated from the variety "Tracy I" in 1945. These peptides disrupt gram-positive bacteria by interfering with cell wall and peptidoglycan synthesis.

<span class="mw-page-title-main">Teicoplanin</span> Pharmaceutical drug

Teicoplanin is an antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and Enterococcus faecalis. It is a semisynthetic glycopeptide antibiotic with a spectrum of activity similar to vancomycin. Its mechanism of action is to inhibit bacterial cell wall synthesis.

<span class="mw-page-title-main">DD-transpeptidase</span>

DD-transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-aca-D-alanyl moiety of R-L-aca-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.

<span class="mw-page-title-main">Glycopeptide antibiotic</span> Class of antibiotic drugs

Glycopeptide antibiotics are a class of drugs of microbial origin that are composed of glycosylated cyclic or polycyclic nonribosomal peptides. Significant glycopeptide antibiotics include the anti-infective antibiotics vancomycin, teicoplanin, telavancin, ramoplanin and decaplanin, corbomycin, complestatin and the antitumor antibiotic bleomycin. Vancomycin is used if infection with methicillin-resistant Staphylococcus aureus (MRSA) is suspected.

<span class="mw-page-title-main">Pseudopeptidoglycan</span>

Pseudopeptidoglycan is a major cell wall component of some Archaea that differs from bacterial peptidoglycan in chemical structure, but resembles bacterial peptidoglycan in function and physical structure. Pseudopeptidoglycan, in general, is only present in a few methanogenic archaea. The basic components are N-acetylglucosamine and N-acetyltalosaminuronic acid, which are linked by β-1,3-glycosidic bonds.

<span class="mw-page-title-main">Penicillin-binding proteins</span> Class of proteins

Penicillin-binding proteins (PBPs) are a group of proteins that are characterized by their affinity for and binding of penicillin. They are a normal constituent of many bacteria; the name just reflects the way by which the protein was discovered. All β-lactam antibiotics bind to PBPs, which are essential for bacterial cell wall synthesis. PBPs are members of a subgroup of enzymes called transpeptidases. Specifically, PBPs are DD-transpeptidases.

<span class="mw-page-title-main">Lysin</span>

Lysins, also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages in order to cleave the host's cell wall during the final stage of the lytic cycle. Lysins are highly evolved enzymes that are able to target one of the five bonds in peptidoglycan (murein), the main component of bacterial cell walls, which allows the release of progeny virions from the lysed cell. Cell-wall-containing Archaea are also lysed by specialized pseudomurein-cleaving lysins, while most archaeal viruses employ alternative mechanisms. Similarly, not all bacteriophages synthesize lysins: some small single-stranded DNA and RNA phages produce membrane proteins that activate the host's autolytic mechanisms such as autolysins.

The enzyme actinomycin lactonase (EC 3.1.1.39) catalyzes the reaction

In enzymology, an aculeacin-A deacylase is an enzyme that catalyzes the chemical reaction that cleaves the amide bond in aculeacin A and related neutral lipopeptide antibiotics, releasing the long-chain fatty acid side chain.

<span class="mw-page-title-main">Ramoplanin</span> Antibiotic chemical

Ramoplanin (INN) is a glycolipodepsipeptide antibiotic drug derived from strain ATCC 33076 of Actinoplanes. It is effective against Gram-positive bacteria.

<span class="mw-page-title-main">Bactoprenol</span> Chemical compound

Bactoprenol also known as dolichol-11 and C55-isoprenyl alcohol (C55-OH) is a lipid first identified in certain species of lactobacilli. It is a hydrophobic alcohol that plays a key role in the growth of cell walls (peptidoglycan) in Gram-positive bacteria.

<span class="mw-page-title-main">Actaplanin</span> Chemical compound

Actaplanin is a complex of broad-spectrum antibiotics made by Actinoplanes bacteria. Research carried out by a group in Eli Lilly and Co. in 1984 identified several actaplanins using high-performance liquid chromatography. Actaplanins A, B1, B2, B3, C1 and G were shown to be composed of the same peptide core, an amino sugar, and varying amounts of glucose, mannose, and rhamnose.

Teixobactin is a peptide-like secondary metabolite of some species of bacteria, that kills some gram-positive bacteria. It appears to belong to a new class of antibiotics, and harms bacteria by binding to lipid II and lipid III, important precursor molecules for forming the cell wall.

<span class="mw-page-title-main">Lipid II</span> Chemical compound

Lipid II is a precursor molecule in the synthesis of the cell wall of bacteria. It is a peptidoglycan, which is amphipathic and named for its bactoprenol hydrocarbon chain, which acts as a lipid anchor, embedding itself in the bacterial cell membrane. Lipid II must translocate across the cell membrane to deliver and incorporate its disaccharide-pentapeptide "building block" into the peptidoglycan mesh. Lipid II is the target of several antibiotics.

D-Amino acids are amino acids where the stereogenic carbon alpha to the amino group has the D-configuration. For most naturally-occurring amino acids, this carbon has the L-configuration. D-Amino acids are occasionally found in nature as residues in proteins. They are formed from ribosomally-derived D-amino acid residues.

Fluorescent D-amino acids (FDAAs) are D-amino acid derivatives whose side-chain terminal is covalently coupled with a fluorophore molecule. FDAAs incorporate into the bacterial peptidoglycan (PG) in live bacteria, resulting in strong peripheral and septal PG labeling without affecting cell growth. They are featured with their in-situ incorporation mechanisms which enable time-course tracking of new PG formation. To date, FDAAs have been employed for studying the cell wall synthesis in various bacterial species through different techniques, such as microscopy, mass spectrometry, flow cytometry.

References

  1. 1 2 "Actagardin (CAS 59165-34-3)". www.caymanchem.com. Retrieved 2022-11-07.
  2. Terekhova LP, Galatenko OA, Laĭko AV, Sumarukova IG, Golova TP, Tolstykh IV, Kozlova I (1999). "[Actinoplanes brasiliensis INA 3802--a producer of peptide antibiotics]". Antibiotiki i Khimioterapiia. 44 (4): 5–8. PMID   10483488.
  3. Somma S, Merati W, Parenti F (March 1977). "Gardimycin, a new antibiotic inhibiting peptidoglycan synthesis". Antimicrobial Agents and Chemotherapy. 11 (3): 396–401. doi:10.1128/AAC.11.3.396. PMC   351996 . PMID   404960.