Adropin is a protein encoded by the energy homeostasis-associated gene ENHO in humans [5] and is highly conserved across mammals. [6]
The biological role of adropin was first described in mice by Andrew Butler's team. They identified it as a protein hormone (hepatokine) secreted from the liver, playing a role in obesity and energy homeostasis. The name "Adropin" is derived from the Latin words "aduro" (to set fire to) and "pinguis" (fat). [7] Adropin is produced in various tissues, including the liver, brain, heart, and gastrointestinal tract. [8]
In animals, adropin regulates carbohydrate and lipid metabolism [9] and influences endothelial function. [10] [11] Its expression in the liver is controlled by feeding status, macronutrient content, [9] as well as by the biological clock. [12] Liver adropin is upregulated by estrogen [13] via the estrogen receptor alpha (ERα). [14]
In humans, lower levels of circulating adropin are linked to several medical conditions, including the metabolic syndrome, obesity, and inflammatory bowel disease. [15] and inflammatory bowel disease. [16] The brain exhibits the highest levels of adropin expression, [17] In the brain, adropin has been shown to have a potential protective role against neurological disease, [18] where it may play a protective role against neurological diseases, brain aging, cognitive decline, and acute ischemia. [19] [20] as well as following acute ischemia. [21]
The orphan G protein-coupled receptor GPR19 has been proposed as a receptor for adropin. [22] [23]
Adropin is a small protein composed of 76 amino acids, and it is produced primarily in the liver and the brain. The precursor of adropin is a larger protein called Energy Homeostasis-Associated (ENHO), and adropin is released through the cleavage of ENHO. [5]
The specific receptors for adropin are not yet fully elucidated, and this is an area of active research. However, studies suggest that adropin might exert its effects by interacting with certain cell surface receptors. [24]
One of the primary areas of interest regarding adropin is its role in metabolic regulation. Research indicates that adropin may play a crucial role in glucose and lipid metabolism. It has been associated with insulin sensitivity, suggesting a potential role in the regulation of blood sugar levels. [25]
In animal studies, alterations in adropin levels have been linked to changes in energy expenditure and body weight. For example, some studies have shown that mice with elevated adropin levels tend to be more resistant to diet-induced obesity. [26]
A study in humans demonstrated that changes in vascular insulin resistance following short-term adverse lifestyle changes were associated with a decrease in plasma adropin in men but not women, [27] perhaps related to adropin's regulation by estrogen. [13]
Adropin also appears to have cardiovascular effects. It has been implicated in the regulation of endothelial function, which is essential for maintaining blood vessel health. Dysfunction in endothelial cells can contribute to conditions such as atherosclerosis and hypertension. Some studies suggest that adropin may have a protective role in cardiovascular health by promoting the dilation of blood vessels and reducing oxidative stress. [28]
In mice, adropin regulates cardiac energy metabolism and improves cardiac function and efficiency. [29] In rats, adropin treatment alleviated diabetes related myocardial fibrosis and diastolic dysfunction, [30] and enhanced the therapeutic potential of mesenchymal stem cells in myocardial infarction. [31]
Adropin is produced in the brain, particularly in the hypothalamus. [8] The hypothalamus is a crucial region for the regulation of various physiological processes, including metabolism and energy balance. The presence of adropin in the brain suggests that it may have additional roles in the central nervous system, although the specifics are still being explored.
There is evidence to suggest that adropin levels exhibit a circadian rhythm, meaning they follow a natural 24-hour cycle. [32] Circadian rhythms play a vital role in regulating various physiological processes, including sleep-wake cycles, hormone secretion, and metabolism.
In mice, adropin treatment significantly increased sperm count and testicular testosterone by increasing expression of GPR19 and steroidogenic proteins via modulating redox potential. [33] In the mouse ovary, adropin and GPR19 are strongly detected in the granulosa cells of large antral follicles and corpus luteum. [34] An additional study suggests a role for adropin in the acceleration of pubertal development. [35]
Given its involvement in metabolic and cardiovascular processes, adropin has sparked interest as a potential biomarker and therapeutic target for conditions such as obesity, diabetes, and cardiovascular disease. However, much more research is needed to understand the precise mechanisms of adropin action and its potential applications in clinical settings.
Adropin is a repressor of fibroblast activation and is dysregulated in patients with Systemic sclerosis. Adropin showed antifibrotic activity in mouse models of skin and lung fibrosis as well as in human skin biopsies. Thus, adropin is a potential therapeutic target in tissue fibrosis. [36]
Leptin, also known as obese protein, is a protein hormone predominantly made by adipocytes. Its primary role is likely to regulate long-term energy balance.
Adipose tissue is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and a variety of immune cells such as adipose tissue macrophages. Its main role is to store energy in the form of lipids, although it also cushions and insulates the body.
Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults. In the 1950s IGF-1 was called "sulfation factor" because it stimulated sulfation of cartilage in vitro, and in the 1970s due to its effects it was termed "nonsuppressible insulin-like activity" (NSILA).
Adiponectin is a protein hormone and adipokine, which is involved in regulating glucose levels and fatty acid breakdown. In humans, it is encoded by the ADIPOQ gene and is produced primarily in adipose tissue, but also in muscle and even in the brain.
Ghrelin is a hormone primarily produced by enteroendocrine cells of the gastrointestinal tract, especially the stomach, and is often called a "hunger hormone" because it increases the drive to eat. Blood levels of ghrelin are highest before meals when hungry, returning to lower levels after mealtimes. Ghrelin may help prepare for food intake by increasing gastric motility and stimulating the secretion of gastric acid.
Interleukin 6 (IL-6) is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine. In humans, it is encoded by the IL6 gene.
Klotho is an enzyme that in humans is encoded by the KL gene. The three subfamilies of klotho are α-klotho, β-klotho, and γ-klotho. α-klotho activates FGF23, and β-klotho activates FGF19 and FGF21. When the subfamily is not specified, the word "klotho" typically refers to the α-klotho subfamily, because α-klotho was discovered before the other members.
Endothelins are peptides with receptors and effects in many body organs. Endothelin constricts blood vessels and raises blood pressure. The endothelins are normally kept in balance by other mechanisms, but when overexpressed, they contribute to high blood pressure (hypertension), heart disease, and potentially other diseases.
The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.
The glucagon-like peptide-1 receptor (GLP1R) is a G protein-coupled receptor (GPCR) found on beta cells of the pancreas and on neurons of the brain. It is involved in the control of blood sugar level by enhancing insulin secretion. In humans it is synthesised by the gene GLP1R, which is present on chromosome 6. It is a member of the glucagon receptor family of GPCRs. GLP1R is composed of two domains, one extracellular (ECD) that binds the C-terminal helix of GLP-1, and one transmembrane (TMD) domain that binds the N-terminal region of GLP-1. In the TMD domain there is a fulcrum of polar residues that regulates the biased signaling of the receptor while the transmembrane helical boundaries and extracellular surface are a trigger for biased agonism.
The fatty-acid-binding proteins (FABPs) are a family of transport proteins for fatty acids and other lipophilic substances such as eicosanoids and retinoids. These proteins are thought to facilitate the transfer of fatty acids between extra- and intracellular membranes. Some family members are also believed to transport lipophilic molecules from outer cell membrane to certain intracellular receptors such as PPAR. The FABPs are intracellular carriers that “solubilize” the endocannabinoid anandamide (AEA), transporting AEA to the breakdown by FAAH, and compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids are also discovered to bind human FABPs that function as intracellular carriers, as THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. Levels of fatty-acid-binding protein have been shown to decline with ageing in the mouse brain, possibly contributing to age-associated decline in synaptic activity.
Rev-Erb alpha (Rev-Erbɑ), also known as nuclear receptor subfamily 1 group D member 1 (NR1D1), is one of two Rev-Erb proteins in the nuclear receptor (NR) family of intracellular transcription factors. In humans, REV-ERBɑ is encoded by the NR1D1 gene, which is highly conserved across animal species.
Peroxisome proliferator-activated receptor alpha (PPAR-α), also known as NR1C1, is a nuclear receptor protein functioning as a transcription factor that in humans is encoded by the PPARA gene. Together with peroxisome proliferator-activated receptor delta and peroxisome proliferator-activated receptor gamma, PPAR-alpha is part of the subfamily of peroxisome proliferator-activated receptors. It was the first member of the PPAR family to be cloned in 1990 by Stephen Green and has been identified as the nuclear receptor for a diverse class of rodent hepatocarcinogens that causes proliferation of peroxisomes.
G protein-coupled receptor 119 also known as GPR119 is a G protein-coupled receptor that in humans is encoded by the GPR119 gene.
Free Fatty acid receptor 4 (FFAR4), also termed G-protein coupled receptor 120 (GPR120), is a protein that in humans is encoded by the FFAR4 gene. This gene is located on the long arm of chromosome 10 at position 23.33. G protein-coupled receptors reside on their parent cells' surface membranes, bind any one of the specific set of ligands that they recognize, and thereby are activated to trigger certain responses in their parent cells. FFAR4 is a rhodopsin-like GPR in the broad family of GPRs which in humans are encoded by more than 800 different genes. It is also a member of a small family of structurally and functionally related GPRs that include at least three other free fatty acid receptors (FFARs) viz., FFAR1, FFAR2, and FFAR3. These four FFARs bind and thereby are activated by certain fatty acids.
Brain mitochondrial carrier protein 1 is a protein that in humans is encoded by the SLC25A14 gene.
A myokine is one of several hundred cytokines or other small proteins and proteoglycan peptides that are produced and released by skeletal muscle cells in response to muscular contractions. They have autocrine, paracrine and/or endocrine effects; their systemic effects occur at picomolar concentrations.
Erythroferrone is a protein hormone encoded in humans by the ERFE gene. Erythroferrone is produced by erythroblasts, inhibits the production of hepcidin in the liver, and so increases the amount of iron available for hemoglobin synthesis. Skeletal muscle secreted ERFE has been shown to maintain systemic metabolic homeostasis.
Christos Socrates Mantzoros is a Greek American physician-scientist, practicing internist-endocrinologist, teacher and researcher. He is a professor of medicine at Harvard Medical School and an adjunct professor at Boston University School of Medicine. He currently serves as the chief of endocrinology, diabetes and metabolism at the VA Boston Healthcare System, where he created de novo a leading academic division true to its tripartite mission and as the founding director of human nutrition at Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School. Finally, he holds the editor-in-chief position of the journal Metabolism: Clinical and Experimental.
Hepatokines are proteins produced by liver cells (hepatocytes) that are secreted into the circulation and function as hormones across the organism. Research is mostly focused on hepatokines that play a role in the regulation of metabolic diseases such as diabetes and fatty liver and include: Adropin, ANGPTL4, Fetuin-A, Fetuin-B, FGF-21, Hepassocin, LECT2, RBP4,Selenoprotein P, Sex hormone-binding globulin.