Affine-regular polygon

Last updated

In geometry, an affine-regular polygon or affinely regular polygon is a polygon that is related to a regular polygon by an affine transformation. Affine transformations include translations, uniform and non-uniform scaling, reflections, rotations, shears, and other similarities and some, but not all linear maps.

Contents

Examples

All triangles are affine-regular. In other words, all triangles can be generated by applying affine transformations to an equilateral triangle. A quadrilateral is affine-regular if and only if it is a parallelogram, which includes rectangles and rhombuses as well as squares. In fact, affine-regular polygons may be considered a natural generalization of parallelograms. [1]

Properties

Many properties of regular polygons are invariant under affine transformations, and affine-regular polygons share the same properties. For instance, an affine-regular quadrilateral can be equidissected into equal-area triangles if and only if is even, by affine invariance of equidissection and Monsky's theorem on equidissections of squares. [2] More generally an -gon with may be equidissected into equal-area triangles if and only if is a multiple of . [3]

Related Research Articles

Quadrilateral polygon with four sides and four corners

A quadrilateral is a polygon in Euclidean plane geometry with four edges (sides) and four vertices (corners). Other names for quadrilateral include quadrangle and tetragon. A quadrilateral with vertices , , and is sometimes denoted as .

Rectangle Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term oblong is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

Kite (geometry)

In Euclidean geometry, a kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. In contrast, a parallelogram also has two pairs of equal-length sides, but they are opposite to each other instead of being adjacent. Kite quadrilaterals are named for the wind-blown, flying kites, which often have this shape and which are in turn named for a bird. Kites are also known as deltoids, but the word "deltoid" may also refer to a deltoid curve, an unrelated geometric object.

Parallelogram Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

Shape Form of an object or its external boundary

A shape or figure is the form of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape, two-dimensional shape, or 2D shape is constrained to lie on a plane, in contrast to solid figures.

Rhombus Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a diamond, after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

In geometry, an equilateral polygon is a polygon which has all sides of the same length. Except in the triangle case, it doesn’t need to be equiangular, but if it does then it is a regular polygon. If the number of sides is at least five, an equilateral polygon doesn’t need to be a convex polygon: it could be concave or even self-intersecting.

Midpoint

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

Square Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle in which two adjacent sides have equal length. A square with vertices ABCD would be denoted ABCD.

Coxeter–Dynkin diagram Pictoral representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied by to get 180 degrees. An unlabeled branch implicitly represents order-3.

Vivianis theorem On the sum of the distances from an interior point to the sides of an equilateral triangle

Viviani's theorem, named after Vincenzo Viviani, states that the sum of the distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. It is a theorem commonly employed in various math competitions, secondary school mathematics examinations, and has wide applicability to many problems in the real world.

Varignons theorem The midpoints of the sides of an arbitrary quadrilateral form a parallelogram

Varignon's theorem is a statement in Euclidean geometry, that deals with the construction of a particular parallelogram, the Varignon parallelogram, from an arbitrary quadrilateral (quadrangle). It is named after Pierre Varignon, whose proof was published posthumously in 1731.

Orthodiagonal quadrilateral

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

Midpoint polygon

In geometry, the midpoint polygon of a polygon P is the polygon whose vertices are the midpoints of the edges of P. It is sometimes called the Kasner polygon after Edward Kasner, who termed it the inscribed polygon "for brevity".

Equidiagonal quadrilateral

In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics, where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.

In geometry, Monsky's theorem states that it is not possible to dissect a square into an odd number of triangles of equal area. In other words, a square does not have an odd equidissection.

Equidissection

In geometry, an equidissection is a partition of a polygon into triangles of equal area. The study of equidissections began in the late 1960s with Monsky's theorem, which states that a square cannot be equidissected into an odd number of triangles. In fact, most polygons cannot be equidissected at all.

In geometry, the circumcenter of mass is a center associated with a polygon which shares many of the properties of the center of mass. More generally, the circumcenter of mass may be defined for simplicial polytopes and also in the spherical and hyperbolic geometries.

Zonogon

In geometry, a zonogon is a centrally symmetric convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations.

References

  1. Coxeter, H. S. M. (December 1992), "Affine regularity", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 62 (1): 249–253, doi: 10.1007/BF02941630 , S2CID   186234003 . See in particular p. 249.
  2. Monsky, P. (1970), "On Dividing a Square into Triangles", The American Mathematical Monthly, 77 (2): 161–164, doi:10.2307/2317329, JSTOR   2317329, MR   0252233 .
  3. Kasimatis, Elaine A. (December 1989), "Dissections of regular polygons into triangles of equal areas", Discrete & Computational Geometry , 4 (1): 375–381, doi: 10.1007/BF02187738 , Zbl   0675.52005 .