Aircraft dynamic modes

Last updated

The dynamic stability of an aircraft refers to how the aircraft behaves after it has been disturbed following steady non-oscillating flight. [1]

Contents

Longitudinal modes

Oscillating motions can be described by two parameters, the period of time required for one complete oscillation, and the time required to damp to half-amplitude, or the time to double the amplitude for a dynamically unstable motion. The longitudinal motion consists of two distinct oscillations, a long-period oscillation called a phugoid mode and a short-period oscillation referred to as the short-period mode.

Phugoid (longer period) oscillations

The longer period mode, called the "phugoid mode" is the one in which there is a large-amplitude variation of air-speed, pitch angle, and altitude, but almost no angle-of-attack variation. The phugoid oscillation is a slow interchange of kinetic energy (velocity) and potential energy (height) about some equilibrium energy level as the aircraft attempts to re-establish the equilibrium level-flight condition from which it had been disturbed. The motion is so slow that the impact of both inertial and damping forces is only very slight; however, despite damping forces being very weak, the period is so long that the pilot usually automatically corrects for this motion without being consciously aware that the oscillation even exists. Typically the period is 20–60 seconds. This oscillation can generally be controlled by the pilot.

Short period oscillations

With no special name, the shorter period mode is called simply the "short-period mode". The motion is a rapid pitching of the aircraft about the center of gravity, essentially an angle-of-attack variation. The short-period mode is an oscillation with a period of only a few seconds that is usually heavily damped by the existence of lifting surfaces far from the aircraft’s center of gravity, such as a horizontal tail or canard. The time to damp the amplitude to one-half of its value is usually on the order of 1 second. Ability to quickly self damp when the stick is briefly displaced is one of the many criteria for general aircraft certification.

Lateral-directional modes

"Lateral-directional" modes involve rolling motions and yawing motions. Motions in one of these axes almost always couples into the other so the modes are generally discussed as the "lateral-directional modes". [note 1]

There are three types of possible lateral-directional dynamic motion: roll subsidence mode, spiral mode, and Dutch roll mode.

Roll subsidence mode

Roll subsidence mode is simply the damping of rolling motion. There is no direct aerodynamic moment created tending to directly restore wings-level, i.e. there is no returning "spring force/moment" proportional to roll angle. However, there is a damping moment (proportional to roll rate) created by the slewing-about of long wings. This prevents large roll rates from building up when roll-control inputs are made or it damps the roll rate (not the angle) to zero when there are no roll-control inputs.

Roll mode can be improved by dihedral effects coming from design characteristics, such as high wings, dihedral angles or sweep angles.

Dutch roll mode

The second lateral motion is an oscillatory combined roll and yaw motion called Dutch roll, perhaps because of its similarity to an ice-skating motion of the same name made by Dutch skaters; the origin of the name is unclear. The Dutch roll may be described as a yaw and roll to the right, followed by a recovery towards the equilibrium condition, then an overshooting of this condition and a yaw and roll to the left, then back past the equilibrium attitude, and so on. The period is usually on the order of 3–15 seconds, but it can vary from a few seconds for light aircraft to a minute or more for airliners. Damping is increased by large directional stability and small dihedral and decreased by small directional stability and large dihedral. Although usually stable in a normal aircraft, the motion may be so slightly damped that the effect is very unpleasant and undesirable. In swept-back wing aircraft, the Dutch roll is solved by installing a yaw damper, in effect a special-purpose automatic pilot that damps out any yawing oscillation by applying rudder corrections. Some swept-wing aircraft have an unstable Dutch roll. If the Dutch roll is very lightly damped or unstable, the yaw damper becomes a safety requirement, rather than a pilot and passenger convenience. Dual yaw dampers are required and a failed yaw damper is cause for limiting flight to low altitudes, and possibly lower Mach numbers, where the Dutch roll stability is improved.

Spiral divergence

Spiraling is inherent. Most aircraft trimmed for straight-and-level flight, if flown stick-fixed, will eventually develop a tightening spiral-dive. [2] If a spiral dive is entered unintentionally, the result can be fatal.

A spiral dive is not a spin; it starts, not with a stall or from torque, but with a random perturbation, increasing roll and airspeed. Without prompt intervention by the pilot this can lead to structural failure of the airframe, either as a result of excess aerodynamic loading or flight into terrain. The aircraft initially gives little indication that anything has changed. The pilot's "down" sensation continues to be with respect to the bottom of the airplane, although the aircraft actually has increasingly rolled off the true vertical. Under VFR conditions, the pilot corrects for small deviations from level by automatically using the true horizon, but in IMC or dark conditions the deviations can go unnoticed: the roll will increase and the lift, no longer vertical, is insufficient to support the airplane. The nose drops and speed increases; the spiral dive has begun.

The forces involved

Say the roll is to the right. A sideslip develops, resulting in a slip-flow which is right-to-left. Now examine the resulting forces one at a time, calling any rightward influence yaw-in, leftward yaw-out, or roll-in or -out, whichever applies. The slip-flow will:

  • push the fin, rudder, and other side areas aft of the plane's centre of gravity to the left, causing a right yaw-in,
  • push side areas ahead of the centre of gravity to the left, causing a left yaw-out,
  • push the right wingtip up, the left down, a left roll-out owing to the dihedral angle,
  • cause the left wing to go faster, the right wing slower, a roll-in,
  • push the side areas of the aircraft above the centre of gravity to the left, a roll-out,
  • push the side areas of the aircraft below the centre of gravity to the left, a roll-in,

Also, an aerodynamic force is imposed by the relative vertical positions of the fuselage and the wings, creating a roll-in leverage if the fuselage is above the wings, as in a low wing configuration; or roll-out if below, as in a high-wing configuration.

A propeller rotating under power will influence the airflow passing it. Its effect depends on throttle setting (high at high rpm, low at low) and the attitude of the aircraft.

Thus, a spiral dive results from the netting-out of many forces depending partly on the design of the aircraft, partly on its attitude, and partly on its throttle setting (a susceptible design will spiral dive under power but may not in the glide).

Recovery

A diving aircraft has more kinetic energy (which varies as the square of speed) than when straight-and-level. To get back to straight-and-level, the recovery must get rid of this excess energy safely. The sequence is:

  • power all off
  • level wings to the horizon, or if horizon has been lost, to the instruments
  • reduce speed using gentle back pressure on the controls until desired speed is reached
  • level off, being wary of a pitch-up tendency as the aircraft is rolled to wings level, and restore power

Fuel slosh

Oscillations can be caused longitudinally or laterally by fuel slosh, a phenomenon known to have affected aircraft including the Douglas A4D, Lockheed P-80, Boeing KC-135, Cessna T-37 and the North American YF-100. Its effect is minimal when the fuel tanks are full or nearly empty: a full tank has high mass but little movement, whereas a nearly empty tank has greater movement but low mass. Fuel slosh can be reduced by installing baffles in the fuel tanks, however these increase mass and reduce fuel capacity. [3] :419

See also

Notes

  1. "Lateral" is used although the rolling motions are about the longitudinal axis.

Related Research Articles

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Spin (aerodynamics)</span> Aviation term for a corkscrew downward path

In flight dynamics a spin is a special category of stall resulting in autorotation about the aircraft's longitudinal axis and a shallow, rotating, downward path approximately centred on a vertical axis. Spins can be entered intentionally or unintentionally, from any flight attitude if the aircraft has sufficient yaw while at the stall point. In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different.

<span class="mw-page-title-main">Autopilot</span> System to maintain vehicle trajectory in lieu of direct operator command

An autopilot is a system used to control the path of an aircraft, marine craft or spacecraft without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allowing the operator to focus on broader aspects of operations.

<span class="mw-page-title-main">Flight control surfaces</span> Surface that allows a pilot to adjust and control an aircrafts flight attitude

Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.

<span class="mw-page-title-main">Dihedral (aeronautics)</span> Angle between each wing or tail surface within a pair

In aeronautics, dihedral is the angle between the left and right wings of an aircraft. "Dihedral" is also used to describe the effect of sideslip on the rolling of the aircraft.

<span class="mw-page-title-main">Dutch roll</span> Aircraft motion combining rolling and yawing

Dutch roll is an aircraft motion consisting of an out-of-phase combination of "tail-wagging" (yaw) and rocking from side to side (roll). This yaw-roll coupling is one of the basic flight dynamic modes. This motion is normally well damped in most light aircraft, though some aircraft with well-damped Dutch roll modes can experience a degradation in damping as airspeed decreases and altitude increases. Dutch roll stability can be artificially increased by the installation of a yaw damper. Wings placed well above the center of gravity, sweepback and dihedral wings tend to increase the roll restoring force, and therefore increase the Dutch roll tendencies; this is why high-winged aircraft often are slightly anhedral, and transport-category swept-wing aircraft are equipped with yaw dampers. A similar phenomenon can happen in a trailer pulled by a car.

In aviation, a phugoid or fugoid is an aircraft motion in which the vehicle pitches up and climbs, and then pitches down and descends, accompanied by speeding up and slowing down as it goes "downhill" and "uphill". This is one of the basic flight dynamics modes of an aircraft.

<span class="mw-page-title-main">Stabilizer (aeronautics)</span> Aircraft component

An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.

Adverse yaw is the natural and undesirable tendency for an aircraft to yaw in the opposite direction of a roll. It is caused by the difference in lift and drag of each wing. The effect can be greatly minimized with ailerons deliberately designed to create drag when deflected upward and/or mechanisms which automatically apply some amount of coordinated rudder. As the major causes of adverse yaw vary with lift, any fixed-ratio mechanism will fail to fully solve the problem across all flight conditions and thus any manually operated aircraft will require some amount of rudder input from the pilot in order to maintain coordinated flight.

In aeronautics, inertia coupling, also referred to as inertial coupling and inertial roll coupling, is a potentially catastrophic phenomenon of high-speed flight which caused the loss of aircraft and pilots before the design features to counter it were understood. It occurs when the inertia of a heavy fuselage exceeds the ability of the aerodynamic forces and moments generated by the wing and empennage to stabilize the aircraft. The problem became apparent as jet fighter aircraft and research aircraft were developed with narrow wingspans, that had relatively low roll inertia, caused by a long slender high-density fuselage, compared to the pitch and yaw inertias.

Directional stability is stability of a moving body or vehicle about an axis which is perpendicular to its direction of motion. Stability of a vehicle concerns itself with the tendency of a vehicle to return to its original direction in relation to the oncoming medium when disturbed (rotated) away from that original direction. If a vehicle is directionally stable, a restoring moment is produced which is in a direction opposite to the rotational disturbance. This "pushes" the vehicle so as to return it to the original orientation, thus tending to keep the vehicle oriented in the original direction.

A yaw damper is a system used to reduce the undesirable tendencies of an aircraft to oscillate in a repetitive rolling and yawing motion, a phenomenon known as the Dutch roll. A large number of modern aircraft, both jet-powered and propeller-driven, have been furnished with such systems.

<span class="mw-page-title-main">Stability derivatives</span>

Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change. For a defined "trim" flight condition, changes and oscillations occur in these parameters. Equations of motion are used to analyze these changes and oscillations. Stability and control derivatives are used to linearize (simplify) these equations of motion so the stability of the vehicle can be more readily analyzed.

Flying qualities is one of the three principal regimes in the science of flight test, which also includes performance and systems. Flying qualities involves the study and evaluation of the stability and control characteristics of an aircraft. They have a critical bearing on the safety of flight and on the ease of controlling an airplane in steady flight and in maneuvers.

<span class="mw-page-title-main">Graveyard spiral</span> Spiral dive entered by a pilot due to spatial disorientation

In aviation, a graveyard spiral is a type of dangerous spiral dive entered into accidentally by a pilot who is not trained or not proficient in flying in instrument meteorological conditions (IMC). Other names for this phenomenon include suicide spiral, deadly spiral, death spiral and vicious spiral.

<span class="mw-page-title-main">Aircraft principal axes</span> Principal directions in aviation

An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation about an axis running from nose to tail. The axes are alternatively designated as vertical, lateral, and longitudinal respectively. These axes move with the vehicle and rotate relative to the Earth along with the craft. These definitions were analogously applied to spacecraft when the first crewed spacecraft were designed in the late 1950s.

In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane. This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength.

<span class="mw-page-title-main">Flight control modes</span> Aircraft control computer software

A flight control mode or flight control law is a computer software algorithm that transforms the movement of the yoke or joystick, made by an aircraft pilot, into movements of the aircraft control surfaces. The control surface movements depend on which of several modes the flight computer is in. In aircraft in which the flight control system is fly-by-wire, the movements the pilot makes to the yoke or joystick in the cockpit, to control the flight, are converted to electronic signals, which are transmitted to the flight control computers that determine how to move each control surface to provide the aircraft movement the pilot ordered.

<span class="mw-page-title-main">Yaw (rotation)</span> Rotation of a vehicle about its vertical axis

A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal. It is commonly measured in degrees per second or radians per second.

Flight dynamics in aviation and spacecraft, is the study of the performance, stability, and control of vehicles flying through the air or in outer space. It is concerned with how forces acting on the vehicle determine its velocity and attitude with respect to time.

References

  1. Etkin, Bernard (1982). Dynamics of flight: stability and control (2nd ed.). New York: Wiley. ISBN   0-471-08936-2.
  2. Perkins, Courtland D.; Hage, Robert (1949). Airplane performance stability and control. New York: Wiley. p. 431. ISBN   0-471-68046-X.
  3. Stengel, Robert F. (17 October 2004). Flight Dynamics. Princeton University Press. ISBN   978-0-691-11407-1 . Retrieved 6 July 2022.