In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane. This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength. [1]
The longitudinal stability of an aircraft, also called pitch stability, [2] refers to the aircraft's stability in its plane of symmetry [2] about the lateral axis (the axis along the wingspan). [1] It is an important aspect of the handling qualities of the aircraft, and one of the main factors determining the ease with which the pilot is able to maintain level flight. [2]
Longitudinal static stability refers to the aircraft's initial tendency on pitching. Dynamic stability refers to whether oscillations tend to increase, decrease or stay constant. [3]
If an aircraft is longitudinally statically stable, a small increase in angle of attack will create a nose-down pitching moment on the aircraft, so that the angle of attack decreases. Similarly, a small decrease in angle of attack will create a nose-up pitching moment so that the angle of attack increases. [1] This means the aircraft will self-correct longitudinal (pitch) disturbances without pilot input.
If an aircraft is longitudinally statically unstable, a small increase in angle of attack will create a nose-up pitching moment on the aircraft, promoting a further increase in the angle of attack.
If the aircraft has zero longitudinal static stability it is said to be statically neutral, and the position of its center of gravity is called the neutral point. [4] : 27
The longitudinal static stability of an aircraft depends on the location of its center of gravity relative to the neutral point. As the center of gravity moves increasingly forward, the pitching moment arm is increased, increasing stability. [5] [4] The distance between the center of gravity and the neutral point is defined as "static margin". It is usually given as a percentage of the mean aerodynamic chord. [6] : 92 If the center of gravity is forward of the neutral point, the static margin is positive. [7] : 8 If the center of gravity is aft of the neutral point, the static margin is negative. The greater the static margin, the more stable the aircraft will be.
Most conventional aircraft have positive longitudinal stability, providing the aircraft's center of gravity lies within the approved range. The operating handbook for every airplane specifies a range over which the center of gravity is permitted to move. [8] If the center of gravity is too far aft, the aircraft will be unstable. If it is too far forward, the aircraft will be excessively stable, which makes the aircraft "stiff" in pitch and hard for the pilot to bring the nose up for landing. Required control forces will be greater.
Some aircraft have low stability to reduce trim drag. This has the benefit of reducing fuel consumption. [5] Some aerobatic and fighter aircraft may have low or even negative stability to provide high manoeuvrability. Low or negative stability is called relaxed stability. [9] [10] [5] An aircraft with low or negative static stability will typically have fly-by-wire controls with computer augmentation to assist the pilot. [5] Otherwise, an aircraft with negative longitudinal stability will be more difficult to fly. It will be necessary for the pilot devote more effort, make more frequent inputs to the elevator control, and make larger inputs, in an attempt to maintain the desired pitch attitude. [1]
For an aircraft to possess positive static stability, it is not necessary for its level to return to exactly what it was before the upset. It is sufficient that the speed and orientation do not continue to diverge but undergo at least a small change back towards the original speed and orientation. [11] : 477 [7] : 3
The deployment of flaps will increase longitudinal stability. [12]
Unlike motion about the other two axes, and in the other degrees of freedom of the aircraft (sideslip translation, rotation in roll, rotation in yaw), which are usually heavily coupled, motion in the longitudinal plane does not typically cause a roll or yaw. [2] [7] : 2
A larger horizontal stabilizer, and a greater moment arm of the horizontal stabilizer about the neutral point, will increase longitudinal stability.[ citation needed ]
For a tailless aircraft, the neutral point coincides with the aerodynamic center, and so for such aircraft to have longitudinal static stability, the center of gravity must lie ahead of the aerodynamic center. [13]
For missiles with symmetric airfoils, the neutral point and the center of pressure are coincident and the term neutral point is not used.[ citation needed ]
An unguided rocket must have a large positive static margin so the rocket shows minimum tendency to diverge from the direction of flight given to it at launch. In contrast, guided missiles usually have a negative static margin for increased maneuverability.[ citation needed ]
Longitudinal dynamic stability of a statically stable aircraft refers to whether the aircraft will continue to oscillate after a disturbance, or whether the oscillations are damped. A dynamically stable aircraft will experience oscillations reducing to nil. A dynamically neutral aircraft will continue to oscillate around its original level, and dynamically unstable aircraft will experience increasing oscillations and displacement from its original level. [3]
Dynamic stability is caused by damping. If damping is too great, the aircraft will be less responsive and less manoeuvrable. [3] [11] : 588
Decreasing phugoid (long-period) oscillations can be achieved by building a smaller stabilizer on a longer tail, and by shifting the center of gravity to the rear.[ citation needed ]
An aircraft that is not statically stable cannot be dynamically stable. [7] : 3
Near the cruise condition most of the lift force is generated by the wings, with ideally only a small amount generated by the fuselage and tail. We may analyse the longitudinal static stability by considering the aircraft in equilibrium under wing lift, tail force, and weight. The moment equilibrium condition is called trim, and we are generally interested in the longitudinal stability of the aircraft about this trim condition.
Equating forces in the vertical direction:
where W is the weight, is the wing lift and is the tail force.
For a thin airfoil at low angle of attack, the wing lift is proportional to the angle of attack:
where is the wing area is the (wing) lift coefficient, is the angle of attack. The term is included to account for camber, which results in lift at zero angle of attack. Finally is the dynamic pressure:
where is the air density and is the speed. [8]
The force from the tail-plane is proportional to its angle of attack, including the effects of any elevator deflection and any adjustment the pilot has made to trim-out any stick force. In addition, the tail is located in the flow field of the main wing, and consequently experiences downwash, reducing its angle of attack.
In a statically stable aircraft of conventional (tail in rear) configuration, the tail-plane force may act upward or downward depending on the design and the flight conditions. [14] In a typical canard aircraft both fore and aft planes are lifting surfaces. The fundamental requirement for static stability is that the aft surface must have greater authority (leverage) in restoring a disturbance than the forward surface has in exacerbating it. This leverage is a product of moment arm from the center of gravity and surface area. Correctly balanced in this way, the partial derivative of pitching moment with respect to changes in angle of attack will be negative: a momentary pitch up to a larger angle of attack makes the resultant pitching moment tend to pitch the aircraft back down. (Here, pitch is used casually for the angle between the nose and the direction of the airflow; angle of attack.) This is the "stability derivative" d(M)/d(alpha), described below.
The tail force is, therefore:
where is the tail area, is the tail force coefficient, is the elevator deflection, and is the downwash angle.
A canard aircraft may have its foreplane rigged at a high angle of incidence, which can be seen in a canard catapult glider from a toy store; the design puts the c.g. well forward, requiring nose-up lift.
Violations of the basic principle are exploited in some high performance "relaxed static stability" combat aircraft to enhance agility; artificial stability is supplied by active electronic means.
There are a few classical cases where this favorable response was not achieved, notably in T-tail configurations. A T-tail airplane has a higher horizontal tail that passes through the wake of the wing later (at a higher angle of attack) than a lower tail would, and at this point the wing has already stalled and has a much larger separated wake. Inside the separated wake, the tail sees little to no freestream and loses effectiveness. Elevator control power is also heavily reduced or even lost, and the pilot is unable to easily escape the stall. This phenomenon is known as 'deep stall'.
Taking moments about the center of gravity, the net nose-up moment is:
where is the location of the center of gravity behind the aerodynamic center of the main wing, is the tail moment arm. For trim, this moment must be zero. For a given maximum elevator deflection, there is a corresponding limit on center of gravity position at which the aircraft can be kept in equilibrium. When limited by control deflection this is known as a 'trim limit'. In principle trim limits could determine the permissible forwards and rearwards shift of the center of gravity, but usually it is only the forward cg limit which is determined by the available control, the aft limit is usually dictated by stability.
In a missile context 'trim limit' more usually refers to the maximum angle of attack, and hence lateral acceleration which can be generated.
The nature of stability may be examined by considering the increment in pitching moment with change in angle of attack at the trim condition. If this is nose up, the aircraft is longitudinally unstable; if nose down it is stable. Differentiating the moment equation with respect to :
Note: is a stability derivative.
It is convenient to treat total lift as acting at a distance h ahead of the centre of gravity, so that the moment equation may be written:
Applying the increment in angle of attack:
Equating the two expressions for moment increment:
The total lift is the sum of and so the sum in the denominator can be simplified and written as the derivative of the total lift due to angle of attack, yielding:
Where c is the mean aerodynamic chord of the main wing. The term:
is known as the tail volume ratio. Its coefficient, the ratio of the two lift derivatives, has values in the range of 0.50 to 0.65 for typical configurations. [15] [ page needed ] Hence the expression for h may be written more compactly, though somewhat approximately, as:
is known as the static margin. For stability it must be negative. (However, for consistency of language, the static margin is sometimes taken as , so that positive stability is associated with positive static margin.) [7] : 8
A tailplane, also known as a horizontal stabilizer, is a small lifting surface located on the tail (empennage) behind the main lifting surfaces of a fixed-wing aircraft as well as other non-fixed-wing aircraft such as helicopters and gyroplanes. Not all fixed-wing aircraft have tailplanes. Canards, tailless and flying wing aircraft have no separate tailplane, while in V-tail aircraft the vertical stabilizer, rudder, and the tail-plane and elevator are combined to form two diagonal surfaces in a V layout.
In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack exceeds its critical value. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil – including its shape, size, and finish – and Reynolds number.
In fluid mechanics, the center of pressure is the point on a body where a single force acting at that point can represent the total effect of the pressure field acting on the body. The total force vector acting at the center of pressure is the surface integral of the pressure vector field across the surface of the body. The resultant force and center of pressure location produce an equivalent force and moment on the body as the original pressure field.
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.
An airfoil or aerofoil is a streamlined body that is capable of generating significantly more lift than drag. Wings, sails and propeller blades are examples of airfoils. Foils of similar function designed with water as the working fluid are called hydrofoils.
A stabilator is a fully movable aircraft horizontal stabilizer. It serves the usual functions of longitudinal stability, control and stick force requirements otherwise performed by the separate parts of a conventional horizontal stabilizer and elevator. Apart from reduced drag, particularly at high Mach numbers, it is a useful device for changing the aircraft balance within wide limits, and for reducing stick forces.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.
Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.
A vertical stabilizer or tail fin is the static part of the vertical tail of an aircraft. The term is commonly applied to the assembly of both this fixed surface and one or more movable rudders hinged to it. Their role is to provide control, stability and trim in yaw. It is part of the aircraft empennage, specifically of its stabilizers.
An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.
Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.
Scalar–tensor–vector gravity (STVG) is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG.
In aerodynamics, the torques or moments acting on an airfoil moving through a fluid can be accounted for by the net lift and net drag applied at some point on the airfoil, and a separate net pitching moment about that point whose magnitude varies with the choice of where the lift is chosen to be applied. The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient, making analysis simpler.
In aerodynamics, the pitching moment on an airfoil is the moment produced by the aerodynamic force on the airfoil if that aerodynamic force is considered to be applied, not at the center of pressure, but at the aerodynamic center of the airfoil. The pitching moment on the wing of an airplane is part of the total moment that must be balanced using the lift on the horizontal stabilizer. More generally, a pitching moment is any moment acting on the pitch axis of a moving body.
Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change. For a defined "trim" flight condition, changes and oscillations occur in these parameters. Equations of motion are used to analyze these changes and oscillations. Stability and control derivatives are used to linearize (simplify) these equations of motion so the stability of the vehicle can be more readily analyzed.
In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane. Canard wings are also extensively used in guided missiles and smart bombs.
The Lanchester-Prandtl lifting-line theory is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing from the wing's geometry. The theory was expressed independently by Frederick W. Lanchester in 1907, and by Ludwig Prandtl in 1918–1919 after working with Albert Betz and Max Munk. In this model, the vortex bound to the wing develops along the whole wingspan because it is shed as a vortex-sheet from the trailing edge, rather than just as a single vortex from the wing-tips.
Steady flight, unaccelerated flight, or equilibrium flight is a special case in flight dynamics where the aircraft's linear and angular velocity are constant in a body-fixed reference frame. Basic aircraft maneuvers such as level flight, climbs and descents, and coordinated turns can be modeled as steady flight maneuvers. Typical aircraft flight consists of a series of steady flight maneuvers connected by brief, accelerated transitions. Because of this, primary applications of steady flight models include aircraft design, assessment of aircraft performance, flight planning, and using steady flight states as the equilibrium conditions around which flight dynamics equations are expanded.
The dynamic stall is one of the hazardous phenomena on helicopter rotors, which can cause the onset of large torsional airloads and vibrations on the rotor blades. Unlike fixed-wing aircraft, of which the stall occurs at relatively low flight speed, the dynamic stall on a helicopter rotor emerges at high airspeeds or/and during manoeuvres with high load factors of helicopters, when the angle of attack(AOA) of blade elements varies intensively due to time-dependent blade flapping, cyclic pitch and wake inflow. For example, during forward flight at the velocity close to VNE, velocity, never exceed, the advancing and retreating blades almost reach their operation limits whereas flows are still attached to the blade surfaces. That is, the advancing blades operate at high Mach numbers so low values of AOA is needed but shock-induced flow separation may happen, while the retreating blade operates at much lower Mach numbers but the high values of AoA result in the stall.
{{cite book}}
: CS1 maint: location missing publisher (link)The slope of the pitching moment curve [as a function of lift coefficient] has come to be the criterion of static longitudinal stability.
{{cite journal}}
: Cite journal requires |journal=
(help)It is a misconception that tailed aeroplanes always carry tailplane downloads. They usually do, with flaps down and at forward c.g. positions, but with flaps up at the c.g. aft, tail loads at high lift are frequently positive (up), although the tail's maximum lifting capability is rarely approached..p.19 p.20 p.21