Alice E. Shapley

Last updated

Alice Eve Shapley is a professor at the University of California, Los Angeles (UCLA) in the Department of Physics and Astronomy. [1] She was one of the discoverers of the spiral galaxy BX442. [2] Through her time at University of California, Los Angeles (UCLA) she has taught Nature of the Universe, Black Holes and Cosmic Catastrophes, Cosmology: Our Changing Concepts of the Universe, Galaxies, Scientific Writing, AGNs, Galaxies, *and* Writing, and The Formation and Evolution of Galaxies and the IGM. [1] Shapley has committed herself to over a two decades of research and publication in the interest of physics and astronomy.

Contents

Education

Shapley received an A.B. in astronomy, astrophysics, and physics at Harvard and Radcliffe Colleges in 1997, and a Ph.D. in astronomy at the California Institute of Technology in 2003. [3] Her PhD was focused around the research of the "Astrophysical Properties of Lyman Break Galaxies". [4]

Research Areas

Shapley's research areas are based on galaxy formation and evolution, the feedback processes in starburst galaxies, stellar populations at high redshift, and the evolution of the inter-galactic medium at high redshift. [5] Through her research she has acquired over $5 million dollars in research funding.

Employment

Since 2013 Alice Shapley has held the position of department of physics and astronomy professor. [6] From 2003-2005 while at the University of California at Berkley she was a Miller Postdoctoral Fellow. [6] She has also held the position of Associate Professor in the Department of Physics and Astronomy from 2005-2008, as well as Assistant Professor in the Department of Astrophysical Sciences from 2008-2013. [6] Alice Shapley went as far as to hold the position of Vice Chair for Astronomy and Astrophysics at UCLA from 2018 to 2022. Shapley has also spent time teaching at Princeton in the areas of astronomy and physics.

Publications

Alice has been listed as a contributing author on 100 publications dating back to 2000. She is listed as the primary author in eight publications, including “The Direct Detection of Lyman-Continuum Emission from Star-forming Galaxies at z ~ 3”. [7] Shapley can be found to either written or contributed to over 300 publications. [1]

The Direct Detection of Lyman-Continuum Emission from Star-forming Galaxies at z ~ 3

UV spectroscopic observations of samples for z~ 3 star-forming galaxies showed uncharacteristically deep penetration into the Lyman continuum region. Ionizing radiation escaping from individual galaxies at high red shift were detected, and the ratio of emergent flux density to Lyman continuum region was determined. The collected data for the average emergent flux density ratio contradicted the escape fraction previously implied from past publications. The team was able to confirm estimates of the level of the ionizing background from galaxies and quasars, but the emergent far-UV spectra could not be confirmed. To help solve this problem, the group suggests taking a sample of LBGs with deep Lyman continuum measurements that is an order of magnitude larger and covers a larger range of luminosity than what they gathered. [8]

Testing metallicity indicators at z~1.4 with the gravitationally lensed galaxy CASSOWARY 20

The star-forming galaxy CASSOWARY 20 was studied in this publication. Temperature and density-sensitive emission lines were used to generate physical properties of the system, as well as a chemical analysis of its atmosphere. The galaxy was found to have a surprisingly low carbon-to-oxygen ratio, suggesting it was quickly formed by a chemical reaction. Emission lines and absorption features allowed the group to determine the metallicity of CASSOWARY 20 with a small level of uncertainty. Large-scale outflows of interstellar medium were similar to related data from galaxies with higher rates of star formation. [9]

Physical Properties of Galaxies from z = 2-4

For this publication Shapley looks at a census of the methods used to find distant galaxies as well as the empirical constraints on their multi-wavelength luminosities and colors. [10] She goes on to discuss what is already known about stellar content and past histories of star formation in high-redshift galaxies; their interstellar contents including dust, gas, and heavy elements; and their structural and dynamical properties. I conclude by considering some of the most pressing and open questions regarding the physics of high-redshift galaxies, which are to be addressed with future facilities. [10] She concludes by looking at the unanswered mysteries of physics of high-redshift galaxies. [10]

Awards and honors

Observing Experience

Related Research Articles

<span class="mw-page-title-main">Redshift</span> Change of wavelength in photons during travel

In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation. The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect, and gravitational potentials, which gravitationally redshift escaping radiation. All sufficiently distant light sources show cosmological redshift corresponding to recession speeds proportional to their distances from Earth, a fact known as Hubble's law that implies the universe is expanding.

<span class="mw-page-title-main">Sandra Faber</span> American astrophysicist

Sandra Moore Faber is an American astrophysicist known for her research on the evolution of galaxies. She is the University Professor of Astronomy and Astrophysics at the University of California, Santa Cruz, and works at the Lick Observatory. She has made discoveries linking the brightness of galaxies to the speed of stars within them and was the co-discoverer of the Faber–Jackson relation. Faber was also instrumental in designing the Keck telescopes in Hawaii.

<span class="mw-page-title-main">W. M. Keck Observatory</span> Astronomical observatory in Hawaii

The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and, when completed in 1993 and 1996, they were the largest optical reflecting telescopes in the world. They are currently the third and fourth largest.

<span class="mw-page-title-main">Marc Aaronson</span> American astronomer (1950–1987)

Marc Aaronson was an American astronomer.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

<span class="mw-page-title-main">Institute of Astronomy, Cambridge</span> Astronomy department of the university of Cambridge

The Institute of Astronomy (IoA) is the largest of the three astronomy departments in the University of Cambridge, and one of the largest astronomy sites in the United Kingdom. Around 180 academics, postdocs, visitors and assistant staff work at the department.

Rychard J. Bouwens is an associate professor at Leiden University. He is also a former member of the Advanced Camera for Surveys Guaranteed Time Observation team and postdoctoral research astronomer at the University of California, Santa Cruz. He obtained his bachelor's degree in physics, chemistry, and mathematics from Hope College. He then went on to earn his Ph.D. in physics at the University of California, Berkeley under the supervision of Joseph Silk and also worked with Tom Broadhurst.

<span class="mw-page-title-main">Robert Kirshner</span> American astronomer

Robert P. Kirshner is an American astronomer, Chief Program Officer for Science for the Gordon and Betty Moore Foundation, and the Clownes Research Professor of Science at Harvard University. Kirshner has worked in several areas of astronomy including the physics of supernovae, supernova remnants, the large-scale structure of the cosmos, and the use of supernovae to measure the expansion of the universe.

<span class="mw-page-title-main">Lyman-alpha blob</span> Astronomical object type

In astronomy, a Lyman-alpha blob (LAB) is a huge concentration of a gas emitting the Lyman-alpha emission line. LABs are some of the largest known individual objects in the Universe. Some of these gaseous structures are more than 400,000 light years across. So far they have only been found in the high-redshift universe because of the ultraviolet nature of the Lyman-alpha emission line. Since Earth's atmosphere is very effective at filtering out UV photons, the Lyman-alpha photons must be redshifted in order to be transmitted through the atmosphere.

Christopher David Impey is a British astronomer, educator, and author. He has been a faculty member at the University of Arizona since 1986. Impey has done research on observational cosmology, in particular low surface brightness galaxies, the intergalactic medium, and surveys of active galaxies and quasars. As an educator, he has pioneered the use of instructional technology for teaching science to undergraduate non-science majors. He has written many technical articles and a series of popular science books including The Living Cosmos, How It Began, How It Ends: From You to the Universe, Dreams of Other Worlds, and Humble Before the Void. He served as Vice-President of the American Astronomical Society, he is a Fellow of the American Association for the Advancement of Science, and a Howard Hughes Medical Institute Professor. He serves on the Advisory Council of METI.

z8_GND_5296 Dwarf galaxy

z8_GND_5296 is a dwarf galaxy discovered in October 2013 which has the highest redshift that has been confirmed through the Lyman-alpha emission line of hydrogen, placing it among the oldest and most distant known galaxies at approximately 13.1 billion light-years (4.0 Gpc) from Earth. It is "seen as it was at a time just 700 million years after the Big Bang [...] when the universe was only about 5 percent of its current age of 13.8 billion years". The galaxy is at a redshift of 7.51, and it is a neighbour to what was announced then as the second-most distant galaxy with a redshift of 7.2. The galaxy in its observable timeframe was producing stars at a phenomenal rate, equivalent in mass to about 330 Suns per year.

<span class="mw-page-title-main">Lyman-alpha blob 1</span> Lyman-alpha blob in the constellation of Aquarius

Lyman-alpha blob 1 (LAB-1) is a giant cosmic cloud of gas located in the constellation of Aquarius, approximately 11.5 billion light-years from Earth with a redshift (z) of 3.09. It was discovered unexpectedly in 2000 by Charles Steidel and colleagues, who were surveying for high-redshift galaxies using the 200 inch Hale Telescope at the Palomar Observatory. The researchers had been investigating the abundance of galaxies in the young Universe when they came across two objects which would become known as Lyman-alpha blobs—huge concentrations of gases emitting the Lyman-alpha emission line of hydrogen.

<span class="mw-page-title-main">Tololo 1247-232</span> Galaxy in the constellation Hydra

Tololo 1247-232 is a small galaxy at a distance of 652 million light-years. It is situated in the southern equatorial constellation of Hydra. Visually, Tol 1247 appears to be an irregular or possibly a barred spiral galaxy. Tol 1247 is named after the surveys that were carried at the Cerro Tololo Inter-American Observatory (CTIO), the first of which was in 1976. It is one of nine galaxies in the local universe known to emit Lyman continuum photons.

<span class="mw-page-title-main">Warrick Couch</span> Australian astronomer

Warrick John Couch is an Australian professional astronomer. He is currently a professor at Swinburne University of Technology in Melbourne. He was previously the Director of Australia's largest optical observatory, the Australian Astronomical Observatory (AAO). He was also the president of the Australian Institute of Physics (2015–2017), and a non-executive director on the Board of the Giant Magellan Telescope Organization. He was a founding non-executive director of Astronomy Australia Limited.

<span class="mw-page-title-main">Haro 11</span> Galaxy in the constellation Sculptor

Haro 11 (H11) is a small galaxy at a distance of 300,000,000 light-years (redshift z=0.020598). It is situated in the southern constellation of Sculptor. Visually, it appears to be an irregular galaxy, as the ESO image to the right shows. H11 is named after Guillermo Haro, a Mexican astronomer who first included it in a study published in 1956 about blue galaxies. H11 is a starburst galaxy that has 'super star clusters' within it and is one of nine galaxies in the local universe known to emit Lyman continuum photons (LyC).

<span class="mw-page-title-main">EGS-zs8-1</span> High-redshift Lyman-break galaxy

EGS-zs8-1 is a high-redshift Lyman-break galaxy found at the northern constellation of Boötes. In May 2015, EGS-zs8-1 had the highest spectroscopic redshift of any known galaxy, meaning EGS-zs8-1 was the most distant and the oldest galaxy observed. In July 2015, EGS-zs8-1 was surpassed by EGSY8p7 (EGSY-2008532660).

Kurt Ludwig Adelberger is an American astrophysicist and sustainability manager, who formerly worked at Google as a principal in energy and sustainability and was previously the Engagement Manager for McKinsey & Company.

<span class="mw-page-title-main">JADES-GS-z13-0</span> High-redshift Lyman-break galaxy that is one of the oldest galaxies known

JADES-GS-z13-0 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Advanced Deep Extragalactic Survey (JADES) on 29 September 2022. Spectroscopic observations by JWST's NIRSpec instrument in October 2022 confirmed the galaxy's redshift of z = 13.2 to a high accuracy, establishing it as the oldest and most distant spectroscopically-confirmed galaxy at the time, with a light-travel distance of 13.4 billion years. Due to the expansion of the universe, its present proper distance is approximately 33 billion light-years. In 2024, two older and more distant galaxies, JADES-GS-z14-0 and JADES-GS-z14-1, were found.

References

  1. 1 2 3 4 Alice Shapley
  2. Maugh, Thomas H. (18 July 2012). "Hubble spots spiral galaxy that shouldn't exist". Los Angeles Times. Retrieved 15 January 2015.
  3. "California Institute of Technology Astronomy Department" (PDF). Retrieved 15 March 2015.
  4. Alice Shapley
  5. "California Institute of Technology Astronomy Department" (PDF). Retrieved 15 March 2015.
  6. 1 2 3 Alice Shapley
  7. "Alice E. Shapley Publications" (PDF).
  8. Shapley, Alice (2006-11-10). "THE DIRECT DETECTION OF LYMAN CONTINUUM EMISSION FROM STAR-FORMING GALAXIES AT z 3". The Astrophysical Journal. 651 (2): 688–703. arXiv: astro-ph/0606635 . Bibcode:2006ApJ...651..688S. doi:10.1086/507511. S2CID   3191852.
  9. James, Bethan L.; Pettini, Max; Christensen, Lise; Auger, Matthew W.; Becker, George D.; King, Lindsay J.; Quider, Anna M.; Shapley, Alice E.; Steidel, Charles C. (2013). "Testing metallicity indicators at z~1.4 with the gravitationally lensed galaxy CASSOWARY 20". Monthly Notices of the Royal Astronomical Society. 440 (2): 1794. arXiv: 1311.5092 . Bibcode:2014MNRAS.440.1794J. doi:10.1093/mnras/stu287. S2CID   24059879.
  10. 1 2 3 Shapley, Alice E. (2011-09-01). "Physical Properties of Galaxies from z = 2-4". Annual Review of Astronomy and Astrophysics. 49 (1): 525–580. arXiv: 1107.5060 . Bibcode:2011ARA&A..49..525S. doi:10.1146/annurev-astro-081710-102542. ISSN   0066-4146. S2CID   118479254.
  11. "McMaster Cosmology Lecture Series". Department of Physics and Astronomy, the University of Toledo.
  12. "17th Marc Aaronson Memorial Lectureship". Department of Astronomy and Steward Observatory, University of Arizona.
  13. "APS Fellow Archive". www.aps.org. Retrieved 2021-10-15.