Alternatives assessment

Last updated

Alternatives assessment or alternatives analysis is a problem-solving approach used in environmental design, technology, and policy. It aims to minimize environmental harm by comparing multiple potential solutions in the context of a specific problem, design goal, or policy objective. It is intended to inform decision-making in situations with many possible courses of action, a wide range of variables to consider, and significant degrees of uncertainty. Alternatives assessment was originally developed as a robust way to guide precautionary action and avoid paralysis by analysis; authors such as O'Brien have presented alternatives assessment as an approach that is complementary to risk assessment, the dominant decision-making approach in environmental policy. [1] Likewise, Ashford has described the similar concept of technology options analysis as a way to generate innovative solutions to the problems of industrial pollution more effectively than through risk-based regulation. [2] [3]

Contents

Alternatives assessment is practiced in a variety of settings, including but not limited to green chemistry, sustainable design, supply-chain chemicals management, and chemicals policy. [4] One prominent application area for alternatives assessment is the substitution of hazardous chemicals with safer alternatives, also known as chemical alternatives assessment. [5]

Methodology

Generally, alternatives assessment involves considering a number of possible options to achieve a specific objective, and applying a principled comparative analysis. The objective is usually to improve the environmental performance or safety of a specific product, material, process, or other activity. Potential alternatives considered in the analysis may include different chemical substances, materials, technologies, methods of use, or even extensive redesign to enable new ways of achieving the objective while avoiding the problem. Understanding the consequences of each available option is central to the process and goals of alternatives assessment, because this helps avoid decisions that substitute one problem with another (unknown) problem. The comparative analysis can involve any number of criteria for evaluating options, and these are typically focused on environmental health and sustainability. [6]

There is no single protocol that dictates how options should be identified, evaluated, and compared in an alternatives assessment. Rather, a number of different alternatives assessment frameworks exist, which serve to structure decision-making and to enable systematic consideration of the key factors. Jacobs and colleagues identify six major components of alternatives assessment: evaluation of hazard, exposure, life cycle impacts, technical feasibility, and economic feasibility; and an overall decision-making strategy. [7]

One major framework, the Lowell Center for Sustainable Production Alternatives Assessment Framework, [6] conceives of alternatives assessment very broadly, as a reflexive problem-solving process that recognizes the social and technical complexity of environmental problems. It emphasizes aspects such as stakeholder participation, transparency of the process, and open discussion of values in decision-making. Most other frameworks are more narrow and primarily focused on technical aspects. [7]

Chemical alternatives assessment

Chemical alternatives assessment (or substitution of hazardous chemicals) is the use of alternatives assessment for finding safer and environmentally preferable design options to reduce or eliminate the use of hazardous chemical substances. Safer alternatives to hazardous chemicals may simply be other chemical substances, or may involve deeper changes in material or product design. [8] [9] Chemical alternatives assessment aims to provide the basis for well-informed decision-making by thoroughly characterizing chemicals and materials (and other design options) across a wide range of environmental and health impact categories. The rationale for this is to avoid shifting environmental health burdens from one category of impacts to another (e.g., substituting a carcinogenic chemical with a neurotoxic one), and to minimize the unintended consequences of decisions made under conditions of uncertainty and ignorance—in other words, to prevent "regrettable substitutions", where an alternative appeared better based on limited knowledge, but turned out to be worse or equally bad. [10]

An array of methodologies and tools for chemical alternatives assessment have been developed worldwide and have been deployed in a variety of industry sectors. [5] [11] Chemical alternatives assessment frameworks include chemical hazard assessment methods that consider a wide range of hazard endpoints, such as those defined in the Globally Harmonized System or the GreenScreen for Safer Chemicals.

Examples

Practice of alternatives assessment

Scientists from a variety of government agencies, academic institutions, non-profit organizations, and firms have contributed to developing the practice of alternatives assessment.

In the United States

Scientific research in the US federal government has contributed to alternatives assessment frameworks and practices. In 2014 the US National Research Council released a chemical alternatives assessment framework developed by an expert working group. [15] Prior to this, the US Environmental Protection Agency ran a program called Design for the Environment (now called Safer Choice), which developed chemical alternatives assessment methodology [8] and created partnerships to undertake numerous alternatives assessments for chemicals of concern in products. [16]

Alternatives assessment has featured in some state-level chemicals policies and regulatory activities. The Massachusetts Toxics Use Reduction Institute has provided public technical assistance for "toxics use reduction planning", which includes alternatives assessment. [17] More recently, the California Department of Toxic Substances Control is implementing new regulations that require firms to undertake alternatives assessments for selected priority chemicals in products. [18] The Interstate Chemicals Clearinghouse, an association of state governments, has also produced its own guide to alternatives assessment. [19]

Some US-based companies have begun to use chemical alternatives assessment to address chemical safety issues in supply chains. For example, firms that participate in the Business-NGO Working Group for Safer Chemicals and Sustainable Materials have produced their own guidance for chemical alternatives assessment. [20]

In the European Union

The Sweden-based non-governmental organization ChemSec has been active in developing resources and tools for the substitution of hazardous chemicals. The Substitution support portal (SUBSPORT) is an EU-based collaboratively-developed resource for chemical substitution. [21] It includes alternatives assessment case studies. In Sweden, the Swedish Centre for Chemical Substitution works to promote the use of Alternatives Assessment by providing education and support to companies.

Related Research Articles

Toxicology The study of substances harmful to living organisms

Toxicology is a scientific discipline, overlapping with biology, chemistry, pharmacology, and medicine, that involves the study of the adverse effects of chemical substances on living organisms and the practice of diagnosing and treating exposures to toxins and toxicants. The relationship between dose and its effects on the exposed organism is of high significance in toxicology. Factors that influence chemical toxicity include the dosage, duration of exposure, route of exposure, species, age, sex, and environment. Toxicologists are experts on poisons and poisoning. There is a movement for evidence-based toxicology as part of the larger movement towards evidence-based practices. Toxicology is currently contributing to the field of Cancer research, since some toxins can be used as drugs for killing tumor cells. One prime example of this is Ribosome Inactivating Proteins, tested in the treatment of Leukemia.

Broadly speaking, a risk assessment is the combined effort of:

  1. identifying and analyzing potential (future) events that may negatively impact individuals, assets, and/or the environment ; and
  2. making judgments "on the tolerability of the risk on the basis of a risk analysis" while considering influencing factors.
Agency for Toxic Substances and Disease Registry US federal agency

The Agency for Toxic Substances and Disease Registry (ATSDR) is a federal public health agency within the United States Department of Health and Human Services. The agency focuses on minimizing human health risks associated with exposure to hazardous substances. It works closely with other federal, state, and local agencies; tribal governments; local communities; and healthcare providers. Its mission is to "Serve the public through responsive public health actions to promote healthy and safe environments and prevent harmful exposures." ATSDR was created as an advisory, nonregulatory agency by the Superfund legislation and was formally organized in 1985.

Green chemistry, also called sustainable chemistry, is an area of chemistry and chemical engineering focused on the design of products and processes that minimize or eliminate the use and generation of hazardous substances. While environmental chemistry focuses on the effects of polluting chemicals on nature, green chemistry focuses on the environmental impact of chemistry, including reducing consumption of nonrenewable resources and technological approaches for preventing pollution.

Toxic Substances Control Act of 1976

The Toxic Substances Control Act is a United States law, passed by the 94th United States Congress in 1976 and administered by the United States Environmental Protection Agency (EPA), that regulates the introduction of new or already existing chemicals. When the TSCA was put into place, all existing chemicals were considered to be safe for use and subsequently grandfathered in. Its three main objectives are to assess and regulate new commercial chemicals before they enter the market, to regulate chemicals already existing in 1976 that posed an "unreasonable risk to health or to the environment", as for example PCBs, lead, mercury and radon, and to regulate these chemicals' distribution and use.

Waste hierarchy

Waste hierarchy is a tool used in the evaluation of processes that protects the environment alongside resource and energy consumption from most favourable to least favourable actions. The hierarchy establishes preferred program priorities based on sustainability. To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.

Electronic waste Discarded electronic devices

Electronic waste or e-waste describes discarded electrical or electronic devices. Used electronics which are destined for refurbishment, reuse, resale, salvage recycling through material recovery, or disposal are also considered e-waste. Informal processing of e-waste in developing countries can lead to adverse human health effects and environmental pollution.

Hexabromocyclododecane Chemical compound

Hexabromocyclododecane is a brominated flame retardant. It consists of twelve carbon, eighteen hydrogen, and six bromine atoms tied to the ring. Its primary application is in extruded (XPS) and expanded (EPS) polystyrene foam that is used as thermal insulation in the building industry. Other uses are upholstered furniture, automobile interior textiles, car cushions and insulation blocks in trucks, packaging material, video cassette recorder housing and electric and electronic equipment. According to UNEP, "HBCD is produced in China, Europe, Japan, and the USA. The known current annual production is approximately 28,000 tonnes per year. The main share of the market volume is used in Europe and China". Due to its persistence, toxicity, and ecotoxicity, the Stockholm Convention on Persistent Organic Pollutants decided in May 2013 to list hexabromocyclododecane in Annex A to the Convention with specific exemptions for production and use in expanded polystyrene and extruded polystyrene in buildings. Because HBCD has 16 possible stereo-isomers with different biological activities, the substance poses a difficult problem for manufacture and regulation.

Design for the Environment (DfE) is a design approach to reduce the overall human health and environmental impact of a product, process or service, where impacts are considered across its life cycle. Different software tools have been developed to assist designers in finding optimized products or processes/services. DfE is also the original name of a United States Environmental Protection Agency (EPA) program, created in 1992, that works to prevent pollution, and the risk pollution presents to humans and the environment. The program provides information regarding safer chemical formulations for cleaning and other products. EPA renamed its program "Safer Choice" in 2015.

Decabromodiphenyl ether Chemical compound

Decabromodiphenyl ether is a brominated flame retardant which belongs to the group of polybrominated diphenyl ethers (PBDEs).

The CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) is a research institute created and funded by Government of India. It was established in Nagpur in 1958 with focus on water supply, sewage disposal, communicable diseases and to some extent on industrial pollution and occupational diseases found common in post-independent India. NEERI is a pioneer laboratory in the field of environmental science and engineering and part of Council of Scientific and Industrial Research (CSIR). NEERI has five zonal laboratories at Chennai, Delhi, Hyderabad, Kolkata and Mumbai. NEERI falls under the Ministry of Science and Technology (India) of central government. The NEERI is an important partner organisation in India's POPs national implementation plan (NIP).

Source reduction is activities designed to reduce the volume, mass, or toxicity of products throughout the life cycle. It includes the design and manufacture, use, and disposal of products with minimum toxic content, minimum volume of material, and/or a longer useful life.

Because of the ongoing controversy on the implications of nanotechnology, there is significant debate concerning whether nanotechnology or nanotechnology-based products merit special government regulation. This mainly relates to when to assess new substances prior to their release into the market, community and environment.

The California Green Chemistry Initiative (CGCI) is a six-part initiative to reduce public and environmental exposure to toxins through improved knowledge and regulation of chemicals; two parts became statute in 2008. The other four parts were not passed, but are still on the agenda of the California Department of Toxic Substances Control green ribbon science panel discussions. The two parts of the California Green Chemistry Initiative that were passed are known as AB 1879 : Hazardous Materials and Toxic Substances Evaluation and Regulation and SB 509 : Toxic Information Clearinghouse. Implementation of CGCI has been delayed indefinitely beyond the January 1, 2011.

Environmental persistent pharmaceutical pollutant

The term Environmental persistent pharmaceutical pollutants (EPPP) was first suggested in the nomination in 2010 of pharmaceuticals and environment as an emerging issue in a Strategic Approach to International Chemicals Management (SAICM) by the International Society of Doctors for the Environment (ISDE). The occurring problems from EPPPs are in parallel explained under environmental impact of pharmaceuticals and personal care products (PPCP). The European Union summarizes pharmaceutical residues with the potential of contamination of water and soil together with other micropollutants under “priority substances”.

The International Chemical Secretariat (ChemSec) is a governmental funded organisation founded in Sweden in 2002 to advocate in favour of stricter regulatory controls on potentially hazardous chemicals and to work with businesses on reducing the production and use of hazardous substances in their products and supply chains. ChemSec disclosed a profit of 1.56 Mio SEK for the financial year 2018. ChemSec maintains the SIN List, identifying hazardous substances likely to be restricted under EU REACH regulation.

The substitution of dangerous chemicals in the workplace is the process of replacing chemicals with less hazardous alternatives or using no chemicals, improving occupational health and safety and minimizing harmful environmental impact. Ideally, the substitution should result in the greatest improvement possible. It can be difficult to know the long term carcinogenic, reprotoxic, allergenic, or neurotoxic effects of a substitution. The cost and practicality of the substitute are also considered because successful substitution may require technical and organizational changes. The result of a substitution may not completely harmless, but should reduce hazards. Substituting hazardous chemicals follows the principles of green chemistry and results in clean technology.

Hazard substitution is a hazard control strategy in which a material or process is replaced with another that is less hazardous. Substitution is the second most effective of the five members of the hierarchy of hazard controls in protecting workers, after elimination. Substitution and elimination are most effective early in the design process, when they may be inexpensive and simple to implement, while for an existing process they may require major changes in equipment and procedures. The concept of prevention through design emphasizes integrating the more effective control methods such as elimination and substitution early in the design phase.

The GreenScreen for Safer Chemicals is a transparent, open standard for assessing chemical hazard that supports alternatives assessment for toxics use reduction through identifying chemicals of concern and safer alternatives. It is used by researchers, product formulators and certifiers in a variety of industries, including building products, textiles, apparel, and consumer products.

Anticipate, recognize, evaluate, control, and confirm (ARECC) is a decision-making framework and process used in the field of industrial hygiene (IH) to anticipate and recognize hazards, evaluate exposures, and control and confirm protection from risks. ARECC supports hazard-informed exposure assessment, exposure-informed hazard assessment, and risk-informed decision making in any endeavor.

References

  1. O'Brien, Mary (2000). Making better environmental decisions: An alternative to risk assessment. Cambridge: MIT Press. ISBN   0-262-15051-4.
  2. Ashford, Nicholas A. (1994). "An innovation-based strategy for the environment" . In Adam M. Finkel; Dominic Golding (eds.). Worst things first? The debate over risk-based national environmental priorities. Washington, DC: Resources for the Future. pp.  275–314. ISBN   0-915707-74-8.
  3. Ashford, Nicholas A. (2005-02-23). "Incorporating science, technology, fairness, and accountability in environmental, health, and safety decisions". Human and Ecological Risk Assessment. 11 (1): 85–96. doi:10.1080/10807030590919918. ISSN   1549-7860.
  4. Geiser, Ken (2015). Chemicals without harm: Policies for a sustainable world. Urban and industrial environments. Cambridge, Mass.: The MIT Press. ISBN   978-0-262-51206-0.
  5. 1 2 Roy M. Harrison; Ronald E. Hester, eds. (2013). Chemical alternatives assessments. Issues in Environmental Science and Technology. Cambridge: Royal Society of Chemistry. ISBN   978-1-84973-723-4.
  6. 1 2 Rossi, Mark; Tickner, Joel; Geiser, Ken (2006). Alternatives assessment framework of the Lowell Center for Sustainable Production (PDF). Lowell, MA: Lowell Center for Sustainable Production.
  7. 1 2 Jacobs, Molly M.; Malloy, Timothy F.; Tickner, Joel A.; Edwards, Sally (2016-03-01). "Alternatives assessment frameworks: Research needs for the informed substitution of hazardous chemicals". Environmental Health Perspectives. 124 (3): 265–280. doi:10.1289/ehp.1409581. ISSN   0091-6765. PMC   4786344 . PMID   26339778.
  8. 1 2 Lavoie, Emma T.; Heine, Lauren G.; Holder, Helen; Rossi, Mark S.; Lee, Robert E.; Connor, Emily A.; Vrabel, Melanie A.; DiFiore, David M.; Davies, Clive L. (2010-12-15). "Chemical alternatives assessment: Enabling substitution to safer chemicals". Environmental Science & Technology. 44 (24): 9244–9249. Bibcode:2010EnST...44.9244L. doi:10.1021/es1015789. ISSN   1520-5851. PMID   21062050.
  9. Tickner, Joel A.; Schifano, Jessica N.; Blake, Ann; Rudisill, Catherine; Mulvihill, Martin J. (2015-01-20). "Advancing safer alternatives through functional substitution". Environmental Science & Technology. 49 (2): 742–749. Bibcode:2015EnST...49..742T. doi:10.1021/es503328m. ISSN   1520-5851. PMID   25517452.
  10. Howard, Gregory J. (2014). "Chemical alternatives assessment: The case of flame retardants". Chemosphere. 116: 112–117. Bibcode:2014Chmsp.116..112H. doi:10.1016/j.chemosphere.2014.02.034. ISSN   0045-6535. PMID   24703012.
  11. Organisation for Economic Co-operation and Development. "OECD substitution and alternatives assessment toolbox".
  12. Toxics Use Reduction Institute (2006). "Five Chemicals Alternatives Assessment Study" . Retrieved 2016-07-31.
  13. "Dry Cleaning Alternatives Assessment". 2012-03-19.
  14. Holder, Helen A.; Mazurkiewicz, P. H.; Robertson, C. A.; Wray, C. A. (2013). "Hewlett-Packard's use of the GreenScreen for safer chemicals". In R. M. Harrison; R. E. Hester (eds.). Chemical alternatives assessments. Issues in Environmental Science and Technology. Cambridge: Royal Society of Chemistry. pp. 157–176. ISBN   978-1-84973-723-4.
  15. National Research Council (US) (2014). A framework to guide selection of chemical alternatives. Washington, D.C: The National Academies Press. doi:10.17226/18872. ISBN   978-0-309-31013-0. PMID   25473704.
  16. US Environmental Protection Agency (2013-12-03). "Design for the Environment alternatives assessments".
  17. Eliason, Pamela; Morose, Gregory (2011). "Safer alternatives assessment: The Massachusetts process as a model for state governments". Journal of Cleaner Production. 19 (5): 517–526. doi:10.1016/j.jclepro.2010.05.011. ISSN   0959-6526.
  18. California Department of Toxic Substances Control. "Alternatives analysis". Safer Consumer Products (SCP). Archived from the original on 2014-01-17. Retrieved 2016-08-02.
  19. Interstate Chemicals Clearinghouse (2013), IC2 Alternatives assessment guide, version 1.0 (PDF)
  20. Business-NGO Working Group for Safer Chemicals and Sustainable Materials (BizNGO) (2011-11-30), BizNGO chemical alternatives assessment protocol
  21. Lissner, Lothar; Romano, Dolores (2011-01-01). "Substitution for hazardous chemicals on an international level—The approach of the European project "SUBSPORT"". New Solutions: A Journal of Environmental and Occupational Health Policy. 21 (3): 477–497. doi:10.2190/NS.21.3.l. ISSN   1541-3772. PMID   22001043.