Amitosis

Last updated

Amitosis, also called karyostenosis, direct cell division, or binary fission, is a form of asexual cell division that occurs in most prokaryotes. It differs from other forms of cell division (e.g., mitosis, meiosis) as it does not involve the mitotic apparatus (spindle formation) or the condensation of chromatin into chromosomes prior to cellular division.

Contents

Several instances of cell division formerly thought to belong to this "non-mitotic" class, such as the division of some unicellular eukaryotes, may actually occur by the process of "closed mitosis", which is different from open or semi-closed mitotic processes, all of which involve mitotic chromosomes and are classified by the fate of the nuclear envelope.

Processes

Amitosis is the division of cells in the interphase state. It is usually accomplished by a simple constriction into two sometimes unequal halves without any regular segregation of genetic material. [1] As a result, this process leads to random distribution of parental chromosomes in the subsequent daughter cells, in contrast to mitosis, which involves precise distribution of chromosomes in the resulting daughter cells. This phenomenon does not involve maximal condensation of chromatin into chromosomes, a molecular event that is observable by light microscopy when sister chromatids line up in pairs along the metaphase plate. Amitosis has been reported in ciliates, yet its role in mammalian cell proliferation is still unconfirmed. The discovery of copy number variations (CNVs) in mammalian cells within an organ [2] has challenged the assumption that every cell in an organism must inherit an exact copy of the parental genome to be functional. Instead of CNVs stemming from errors in mitosis, such variations could have arisen from amitosis, and may even be beneficial to the cells. Furthermore, ciliates possess a mechanism for adjusting copy numbers of individual genes during amitosis of the macronucleus. [3]

Discovery

Amitosis was first described in 1880 by Walther Flemming, who also described mitosis, and others. [4] Initially, it was common for biologists to think of cells having both the capability to divide mitotically and amitotically. [5]

Functional role

Additional reports of non-mitotic proliferation as well as insights into its underlying mechanisms have emerged from extensive work with polyploid cells. Multiple copies of the genome in a cell population may be involved in the cell's adaptation to the environment. [6]

Polyploid cells are frequently "reduced" to diploid cells by amitosis. [7] Naturally occurring polyploid placental cells have been observed to produce nuclei with diploid or near-diploid complements of DNA. Such nuclei, derived from polyploid placental cells, receive one or more copies of a microscopically identifiable region of the chromatin. This particular amitotic process can actually result in representative transmission of chromatin. In rat polyploid trophoblasts, the nuclear envelope of the giant nucleus is involved in this subdivision. [8] Polyploid cells may also be key to the survival processes underlying chemotherapy resistance in certain cells.

It is reported that following treatment of cultured cells with mitosis-inhibiting chemicals (similar to those used in certain chemotherapeutic protocols), a small population of induced polyploid cells survived. Eventually, this population gave rise to "normal" diploid cells by the formation of polyploid chromatin bouquets that return to an interphase state, before separating into several secondary nuclei. [9] Controlled autophagic degradation of DNA as well as the production of nuclear envelope-limited sheets [10] accompany the process. [11] Since this process of depolyploidization involves mitotic chromosomes, it conforms to the broad definition of amitosis.

Current literature

There are also multiple reports of amitosis occurring when nuclei bud out through the plasma membrane of a polyploid cell. Such a process has been shown to occur in amniotic cells transformed by a virus [12] and in mouse embryo fibroblast lines exposed to carcinogens. [13] A similar process called extrusion has been described for mink trophoblasts, a tissue in which fissioning is also observed. [14] Asymmetric cell division has also been described in polyploid giant cancer cells and low eukaryotic cells and reported to occur by the amitotic processes of splitting, budding, or burst-like mechanisms. [15] Similarly, two different kinds of amitosis have been described in monolayers of Ishikawa endometrial cells. [16]

An example of amitosis particularly suited to the formation of multiple differentiated nuclei in a reasonably short period of time has been shown to occur during the differentiation of fluid-enclosing hemispheres called domes from adherent Ishikawa endometrial monolayer cells during an approximately 20-hour period [17] ,. [18] Aggregates of nuclei from monolayer syncytia become enveloped in mitochondrial membranes, forming structures (mitonucleons) that become elevated as a result of vacuole formation during the initial 6 hours of differentiation [19] ,. [20] Over the next 4 to 5 hours, chromatin from these aggregated nuclei becomes increasingly pycnotic, eventually undergoing karyolysis and karyorrhexis in the now-elevated predome structures. [21] In other systems, such changes accompany apoptosis but not in the differentiating Ishikawa cells, where the processes appear to accompany changes in DNA essential for the newly created, differentiated dome cells. Finally, the chromatin filaments emerging from these processes form a mass from which dozens of dome nuclei are amitotically generated [22] over a period of approximately 3 hours with the apparent involvement of nuclear envelope-limited sheets. [23]

Scientific literature not only affirms the involvement of amitosis in cell proliferation, but also explores the existence of more than one amitotic mechanism capable of producing "progeny nuclei" without the involvement of "mitotic chromosomes." A form of amitosis involves fissioning, a nucleus splitting in two without the involvement of chromosomes, which has been reported to occur in placental tissues and in cells grown from such tissues in rats, [24] as well as in human and mouse trophoblasts [25] ,. [26] Amitosis by fissioning has also been reported in mammalian liver cells [27] and human adrenal cells. [28] Chen and Wan [29] reported amitosis in rat liver and presented a mechanism for a four-stage amitotic process whereby chromatin threads are reproduced and equally distributed to daughter cells as the nucleus splits in two.

In other studies, examination of fetal guts during development (5 to 7 weeks), colonic adenomas, and adenocarcinomas has revealed nuclei that appear as hollow bells encased in tubular syncytia. These structures can either divide symmetrically by an amitotic nuclear fission process, forming new "bells", or undergo fission asymmetrically, resulting in one of seven other nuclear morphotypes, five of which appear to be specific to development since they are rarely observed in adult organisms. [30]

The current body of literature suggests that amitosis may be involved in cellular development [31] in humans. likely during the fetal and embryonic phases of development when the majority of these cells are produced.

Related Research Articles

<span class="mw-page-title-main">Cell nucleus</span> Eukaryotic membrane-bounded organelle containing DNA

The cell nucleus is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many. The main structures making up the nucleus are the nuclear envelope, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm; and the nuclear matrix, a network within the nucleus that adds mechanical support.

<span class="mw-page-title-main">Mitosis</span> Process in which chromosomes are replicated and separated into two new identical nuclei

Mitosis is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the total number of chromosomes is maintained. Mitosis is preceded by the S phase of interphase and is followed by telophase and cytokinesis; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis altogether define the mitotic phase of a cell cycle—the division of the mother cell into two daughter cells genetically identical to each other.

<span class="mw-page-title-main">Nuclear pore</span> Openings in nuclear envelope of eukaryotic cells

A nuclear pore is a channel as part of the nuclear pore complex (NPC), a large protein complex found in the nuclear envelope of eukaryotic cells. The nuclear envelope (NE) surrounds the cell nucleus containing DNA and facilitates the selective membrane transport of various molecules.

<span class="mw-page-title-main">Cell division</span> Process by which living cells divide

Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there are two distinct types of cell division: a vegetative division (mitosis), producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction (meiosis), reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the daughter cells. Mitosis is a part of the cell cycle, in which, replicated chromosomes are separated into two new nuclei. Cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. In general, mitosis is preceded by the S stage of interphase and is followed by telophase and cytokinesis; which divides the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis all together define the M phase of an animal cell cycle—the division of the mother cell into two genetically identical daughter cells. To ensure proper progression through the cell cycle, DNA damage is detected and repaired at various checkpoints throughout the cycle. These checkpoints can halt progression through the cell cycle by inhibiting certain cyclin-CDK complexes. Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of meiosis. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.

<span class="mw-page-title-main">Prophase</span> First phase of cell division in both mitosis and meiosis

Prophase is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin reticulum and the disappearance of the nucleolus.

<span class="mw-page-title-main">Spindle apparatus</span> Feature of biological cell structure

In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with half the number of chromosomes of the parent cell.

<span class="mw-page-title-main">Telophase</span> Final stage of a cell division for eukaryotic cells both in mitosis and meiosis

Telophase is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase are reversed. As chromosomes reach the cell poles, a nuclear envelope is re-assembled around each set of chromatids, the nucleoli reappear, and chromosomes begin to decondense back into the expanded chromatin that is present during interphase. The mitotic spindle is disassembled and remaining spindle microtubules are depolymerized. Telophase accounts for approximately 2% of the cell cycle's duration.

<span class="mw-page-title-main">Cell growth</span> Increase in the total cell mass

Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. Cell growth occurs when the overall rate of cellular biosynthesis is greater than the overall rate of cellular degradation.

<span class="mw-page-title-main">Karyogamy</span> Fusion of the nuclei of two haploid eukaryotic cells

Karyogamy is the final step in the process of fusing together two haploid eukaryotic cells, and refers specifically to the fusion of the two nuclei. Before karyogamy, each haploid cell has one complete copy of the organism's genome. In order for karyogamy to occur, the cell membrane and cytoplasm of each cell must fuse with the other in a process known as plasmogamy. Once within the joined cell membrane, the nuclei are referred to as pronuclei. Once the cell membranes, cytoplasm, and pronuclei fuse, the resulting single cell is diploid, containing two copies of the genome. This diploid cell, called a zygote or zygospore can then enter meiosis, or continue to divide by mitosis. Mammalian fertilization uses a comparable process to combine haploid sperm and egg cells (gametes) to create a diploid fertilized egg.

Maturation-promoting factor (abbreviated MPF, also called mitosis-promoting factor or M-Phase-promoting factor) is the cyclin-Cdk complex that was discovered first in frog eggs. It stimulates the mitotic and meiotic phases of the cell cycle. MPF promotes the entrance into mitosis (the M phase) from the G2 phase by phosphorylating multiple proteins needed during mitosis. MPF is activated at the end of G2 by a phosphatase, which removes an inhibitory phosphate group added earlier.

<span class="mw-page-title-main">Nuclear lamina</span>

The nuclear lamina is a dense fibrillar network inside the nucleus of eukaryote cells. It is composed of intermediate filaments and membrane associated proteins. Besides providing mechanical support, the nuclear lamina regulates important cellular events such as DNA replication and cell division. Additionally, it participates in chromatin organization and it anchors the nuclear pore complexes embedded in the nuclear envelope.

Endoreduplication is replication of the nuclear genome in the absence of mitosis, which leads to elevated nuclear gene content and polyploidy. Endoreduplication can be understood simply as a variant form of the mitotic cell cycle (G1-S-G2-M) in which mitosis is circumvented entirely, due to modulation of cyclin-dependent kinase (CDK) activity. Examples of endoreduplication characterised in arthropod, mammalian, and plant species suggest that it is a universal developmental mechanism responsible for the differentiation and morphogenesis of cell types that fulfill an array of biological functions. While endoreduplication is often limited to specific cell types in animals, it is considerably more widespread in plants, such that polyploidy can be detected in the majority of plant tissues. Polyploidy and aneuploidy are common phenomena in cancer cells. Given that oncogenesis and endoreduplication likely involve subversion of common cell cycle regulatory mechanisms, a thorough understanding of endoreduplication may provide important insights for cancer biology.

<span class="mw-page-title-main">Nuclear dimorphism</span>

Nuclear dimorphism is a term referred to the special characteristic of having two different kinds of nuclei in a cell. There are many differences between the types of nuclei. This feature is observed in protozoan ciliates, like Tetrahymena, and some foraminifera. Ciliates contain two nucleus types: a macronucleus that is primarily used to control metabolism, and a micronucleus which performs reproductive functions and generates the macronucleus. The compositions of the nuclear pore complexes help determine the properties of the macronucleus and micronucleus. Nuclear dimorphism is subject to complex epigenetic controls. Nuclear dimorphism is continuously being studied to understand exactly how the mechanism works and how it is beneficial to cells. Learning about nuclear dimorphism is beneficial to understanding old eukaryotic mechanisms that have been preserved within these unicellular organisms but did not evolve into multicellular eukaryotes.

<span class="mw-page-title-main">Ran (protein)</span> GTPase functioning in nuclear transport

Ran also known as GTP-binding nuclear protein Ran is a protein that in humans is encoded by the RAN gene. Ran is a small 25 kDa protein that is involved in transport into and out of the cell nucleus during interphase and also involved in mitosis. It is a member of the Ras superfamily.

<span class="mw-page-title-main">Nuclear envelope</span> Nuclear membrane surrounding the nucleus in eukaryotic cells

The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.

<span class="mw-page-title-main">Premature chromosome condensation</span> Premature mitosis

Premature chromosome condensation (PCC), also known as premature mitosis, occurs in eukaryotic organisms when mitotic cells fuse with interphase cells. Chromatin, a substance that contains genetic material such as DNA, is normally found in a loose bundle inside a cell's nucleus. During the prophase of mitosis, the chromatin in a cell compacts to form condensed chromosomes; this condensation is required in order for the cell to divide properly. While mitotic cells have condensed chromosomes, interphase cells do not. PCC results when an interphase cell fuses with a mitotic cell, causing the interphase cell to produce condensed chromosomes prematurely.

<i>Chilodonella uncinata</i> Species of single-celled organism

Chilodonella uncinata is a single-celled organism of the ciliate class of alveoles. As a ciliate, C. uncinata has cilia covering its body and a dual nuclear structure, the micronucleus and macronucleus. Unlike some other ciliates, C. uncinata contains millions of minichromosomes in its macronucleus while its micronucleus is estimated to contain 3 chromosomes. Childonella uncinata is the causative agent of Chilodonelloza, a disease that affects the gills and skin of fresh water fish, and may act as a facultative of mosquito larva.

Smooth muscle tumor of uncertain malignant potential, abbreviated STUMP, is an uncommon tumor of the uterine smooth muscle that may behave like a benign tumor or a cancerous tumor.

Xenopus egg extract is a lysate that is prepared by crushing the eggs of the African clawed frog Xenopus laevis. It offers a powerful cell-free system for studying various cell biological processes, including cell cycle progression, nuclear transport, DNA replication and chromosome segregation. It is also called Xenopus egg cell-free system or Xenopus egg cell-free extract.

The germ cell nest forms in the ovaries during their development. The nest consists of multiple interconnected oogonia formed by incomplete cell division. The interconnected oogonia are surrounded by somatic cells called granulosa cells. Later on in development, the germ cell nests break down through invasion of granulosa cells. The result is individual oogonia surrounded by a single layer of granulosa cells. There is also a comparative germ cell nest structure in the developing spermatogonia, with interconnected intracellular cytoplasmic bridges.

References

  1. Tippit, D. H.; Pickett-Heaps, J. D. (1976-07-01). "Apparent amitosis in the binucleate dinoflagellate Peridinium Balticum". Journal of Cell Science. 21 (2): 273–289. doi:10.1242/jcs.21.2.273. ISSN   0021-9533. PMID   987046.
  2. O'Huallachain, M.; Karczewski, K. J.; Weissman, S. M.; Urban, A. E.; Snyder, M. P. (2012-10-30). "Extensive genetic variation in somatic human tissues". Proceedings of the National Academy of Sciences. 109 (44): 18018–18023. Bibcode:2012PNAS..10918018O. doi: 10.1073/pnas.1213736109 . ISSN   0027-8424. PMC   3497787 . PMID   23043118.
  3. Prescott, D. M. (June 1994). "The DNA of ciliated protozoa". Microbiological Reviews. 58 (2): 233–267. doi:10.1128/MMBR.58.2.233-267.1994. ISSN   0146-0749. PMC   372963 . PMID   8078435.
  4. Macklin, C. C. (June 1916). "Amitosis in Cells Growing in Vitro". The Biological Bulletin. 30 (6): 445–[466]–1. doi:10.2307/1536358. ISSN   0006-3185. JSTOR   1536358.
  5. Holland, Nicholas (2021), "Vicenzo Colucci's 1886 memoir, Intorno alla rigenerazione degli arti e della coda nei tritoni, annotated and translated into English as: Concerning regeneration of the limbs and tail in salamanders", The European Zoological Journal, 88: 837–890, doi: 10.1080/24750263.2021.1943549 , S2CID   238904520
  6. Duncan, Andrew W.; Taylor, Matthew H.; Hickey, Raymond D.; Hanlon Newell, Amy E.; Lenzi, Michelle L.; Olson, Susan B.; Finegold, Milton J.; Grompe, Markus (2010-10-07). "The ploidy conveyor of mature hepatocytes as a source of genetic variation". Nature. 467 (7316): 707–710. Bibcode:2010Natur.467..707D. doi:10.1038/nature09414. ISSN   1476-4687. PMC   2967727 . PMID   20861837.
  7. Zybina, T.G.; Zybina, E.V.; Kiknadze, I.I.; Zhelezova, A.I. (2001). "Polyploidization in the Trophoblast and Uterine Glandular Epithelium of the Endotheliochorial Placenta of Silver Fox (Vulpes fulvus Desm.), as Revealed by the DNA Content". Placenta. 22 (5): 490–498. doi:10.1053/plac.2001.0675. PMID   11373160.
  8. Zybina, Eugenia V.; Zybina, Tatiana G. (July 2008). "Modifications of nuclear envelope during differentiation and depolyploidization of rat trophoblast cells". Micron. 39 (5): 593–606. doi:10.1016/j.micron.2007.05.006. ISSN   0968-4328. PMID   17627829.
  9. Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Kosmacek, Elizabeth A.; Cragg, Mark S.; Ianzini, Fiorenza; Anisimov, Alim P. (July 2011). "Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation". Cell Biology International. 35 (7): 687–695. doi:10.1042/CBI20100762. ISSN   1095-8355. PMID   21250945. S2CID   130498.
  10. Olins, A. L.; Buendia, B.; Herrmann, H.; Lichter, P.; Olins, D. E. (1998-11-25). "Retinoic acid induction of nuclear envelope-limited chromatin sheets in HL-60". Experimental Cell Research. 245 (1): 91–104. doi:10.1006/excr.1998.4210. ISSN   0014-4827. PMID   9828104.
  11. Erenpreisa, Jekaterina; Ivanov, Andrey; Cragg, Mark; Selivanova, Galina; Illidge, Timothy (March 2002). "Nuclear envelope-limited chromatin sheets are part of mitotic death". Histochemistry and Cell Biology. 117 (3): 243–255. doi:10.1007/s00418-002-0382-6. ISSN   0948-6143. PMID   11914922. S2CID   7261907.
  12. Walen, Kirsten H. (February 2002). "The origin of transformed cells. studies of spontaneous and induced cell transformation in cell cultures from marsupials, a snail, and human amniocytes". Cancer Genetics and Cytogenetics. 133 (1): 45–54. doi:10.1016/s0165-4608(01)00572-6. ISSN   0165-4608. PMID   11890989.
  13. Sundaram, Meenakshi; Guernsey, Duane L.; Rajaraman, Murali M.; Rajaraman, Rengaswami (February 2004). "Neosis: a novel type of cell division in cancer". Cancer Biology & Therapy. 3 (2): 207–218. doi: 10.4161/cbt.3.2.663 . ISSN   1538-4047. PMID   14726689.
  14. Isakova, G. K.; Shilova, I. E. (July 2003). "[Frequency ratio of two forms of amitotic division of trophoblast cell nuclei in the mink blastocysts during the period of delayed implantation]". Izvestiia Akademii Nauk. Seriia Biologicheskaia (4): 395–398. ISSN   1026-3470. PMID   12942744.
  15. Zhang, Dan; Wang, Yijia; Zhang, Shiwu (2014). "Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells". BioMed Research International. 2014: 432652. doi: 10.1155/2014/432652 . ISSN   2314-6141. PMC   4089188 . PMID   25045675.
  16. Fleming, Honoree (2014-12-31). Unusual characteristics of opaque Ishikawa endometrial cells include the envelopment of chromosomes with material containing endogenous biotin in the latter stages of cytokinesis (Report). PeerJ PrePrints.
  17. Fleming, Honorée (1995). "Differentiation in human endometrial cells in monolayer culture: Dependence on a factor in fetal bovine serum". Journal of Cellular Biochemistry. 57 (2): 262–270. doi:10.1002/jcb.240570210. ISSN   0730-2312. PMID   7759563. S2CID   40483780.
  18. Fleming, Honoree (1999). "Structure and Function of Cultured Endometrial Epithelial Cells". Seminars in Reproductive Medicine. 17 (1): 93–106. doi:10.1055/s-2007-1016215. ISSN   1526-8004. PMID   10406079. S2CID   9681391.
  19. Fleming, Honoree; Condon, Rebekah; Peterson, Genevieve; Guck, Ilse; Prescott, Elizabeth; Chatfield, Kathryn; Duff, Meghan (1998-12-01). "Role of biotin-containing membranes and nuclear distribution in differentiating human endometrial cells". Journal of Cellular Biochemistry. 71 (3): 400–415. doi:10.1002/(SICI)1097-4644(19981201)71:3<400::AID-JCB9>3.0.CO;2-W. PMID   9831077. S2CID   19080155.
  20. Fleming, Honoree (2016-02-09). Mitonucleons formed during differentiation of Ishikawa endometrial cells generate vacuoles that elevate monolayer syncytia: Differentiation of Ishikawa domes, Part 1 (Report). PeerJ PrePrints. doi: 10.7287/peerj.preprints.1728v1 .
  21. Fleming, Honoree (2016-02-09). Pyknotic chromatin in mitonucleons elevating in syncytia undergo karyorhhexis and karyolysis before coalescing into an irregular chromatin mass: Differentiation of Ishikawa Domes, Part 2 (Report). PeerJ PrePrints. doi: 10.7287/peerj.preprints.1729v1 .
  22. Fleming, Honoree (2016-02-09). Chomatin mass from previously aggregated, pyknotic, and fragmented monolayer nuclei is a source for dome cell nuclei generated by amitosis: Differentiation of Ishikawa Domes, Part 3 (Report). PeerJ PrePrints. doi: 10.7287/peerj.preprints.1730v1 .
  23. Olins, A. L.; Buendia, B.; Herrmann, H.; Lichter, P.; Olins, D. E. (1998-11-25). "Retinoic acid induction of nuclear envelope-limited chromatin sheets in HL-60". Experimental Cell Research. 245 (1): 91–104. doi:10.1006/excr.1998.4210. ISSN   0014-4827. PMID   9828104.
  24. Ferguson, F. G.; Palm, J. (1976-02-15). "Histologic characteristics of cells cultured from rat placental tissue". American Journal of Obstetrics and Gynecology. 124 (4): 415–420. doi:10.1016/0002-9378(76)90103-4. ISSN   0002-9378. PMID   1251862.
  25. Cotte, C.; Easty, G. C.; Neville, A. M.; Monaghan, P. (August 1980). "Preparation of highly purified cytotrophoblast from human placenta with subsequent modulation to form syncytiotrophoblast in monolayer cultures". In Vitro. 16 (8): 639–646. doi:10.1007/bf02619191. ISSN   0073-5655. PMID   7419234. S2CID   20834295.
  26. Kuhn, E. M.; Therman, E.; Susman, B. (May 1991). "Amitosis and endocycles in early cultured mouse trophoblast". Placenta. 12 (3): 251–261. doi:10.1016/0143-4004(91)90006-2. ISSN   0143-4004. PMID   1754574.
  27. David, H.; Uerlings, I. (September 1992). "[Ultrastructure of amitosis and mitosis of the liver]". Zentralblatt für Pathologie. 138 (4): 278–283. ISSN   0863-4106. PMID   1420108.
  28. Magalhães, M. C.; Pignatelli, D.; Magalhães, M. M. (April 1991). "Amitosis in human adrenal cells". Histology and Histopathology. 6 (2): 251–256. ISSN   0213-3911. PMID   1802124.
  29. Chen, Y. Q.; Wan, B. K. (1986). "A study on amitosis of the nucleus of the mammalian cell. I. A study under the light and transmission electron microscope". Acta Anatomica. 127 (1): 69–76. ISSN   0001-5180. PMID   3788448.
  30. Gostjeva, E. V.; Zukerberg, L.; Chung, D.; Thilly, W. G. (2006-01-01). "Bell-shaped nuclei dividing by symmetrical and asymmetrical nuclear fission have qualities of stem cells in human colonic embryogenesis and carcinogenesis". Cancer Genetics and Cytogenetics. 164 (1): 16–24. doi:10.1016/j.cancergencyto.2005.05.005. ISSN   0165-4608. PMID   16364758.
  31. Duncan, Andrew W.; Taylor, Matthew H.; Hickey, Raymond D.; Hanlon Newell, Amy E.; Lenzi, Michelle L.; Olson, Susan B.; Finegold, Milton J.; Grompe, Markus (2010-10-07). "The ploidy conveyor of mature hepatocytes as a source of genetic variation". Nature. 467 (7316): 707–710. Bibcode:2010Natur.467..707D. doi:10.1038/nature09414. ISSN   1476-4687. PMC   2967727 . PMID   20861837.

Further reading

Child CM. 1907 Amitosis as a factor in normal and regulatory growth. Anat Anz. 30: 271–97.

Coleman SJ, Gerza L, JonesCJ, Sibley CP, Aplin JD, Heazell AEP. 2013. Syncytial nuclear

Fleming H. 1995 Differentiation in human endometrial cells in monolayer culture: Dependence on a factor in fetal bovine serum J.Cell Biochem. 57:262-270.

Fleming H, Condon R, Peterson G, Guck I, Prescott E, Chatfield K, Duff M. 1998. Role of biotin-containing membranes and nuclear distribution in differentiating human endometrial cells. Journal of Cellular Biochemistry. 71(3): 400–415.

Fleming H. 1999 Structure and function of cultured endometrial epithelial cells. Semin Reprod Endocrinol.17(1):93-106.

Fleming H. 2014 Unusual characteristics of opaque Ishikawa endometrial cells include the envelopment of chromosomes with material containing endogenous biotin in the latter stages of cytokinesis doi : 10.7287/peerj.preprints.772v1

Fleming H. 2016a. Mitonucleons formed during Differentiation of Ishikawa Endometrial Epithelial Cells are involved in Vacuole Formation that Elevates Monolayer Cells into Domes. Differentiation of Ishikawa Domes, Part 1, doi : 10.7287/peerj.preprints.1728v1

Fleming H. 2016b. Pyknotic chromatin in mitonucleons elevating in syncytia undergo karyorhhexis and karyolysis before coalescing into an irregular chromatin mass: Differentiation of Ishikawa Domes, Part 2, doi : 10.7287/peerj.preprints.1729v1

Fleming H. 2016c. Chromatin mass from previously aggregated, pyknotic, and fragmented monolayer nuclei is a source for dome cell nuclei generated by amitosis: Differentiation of Ishikawa Domes, Part 3, doi : 10.7287/peerj.preprints.1730v1

Güttinger, S; Laurell, E; Kutay, U (2009), "Orchestrating nuclear envelope disassembly and reassembly during mitosis", Nat Rev Mol Cell Biol10 (3): 178–191, doi : 10.1038/nrm2641, PMID   19234477

Isakova GK, Shilova IE. 2000. Reproduction by "budding" of the trophoblast cells in the mink implanting blastocysts. Dokl Biol Sci. 371:214-6.

Schoenfelder KP, Fox DT 2015 The expanding implications of polyploidy. J Cell Biol. 25;209(4):485-91. doi : 10.1083/jcb.201502016.

Thilly WG, Gostjeva EV, Koledova VV, Zukerberg LR, Chung D, Fomina JN, Darroudi F, Stollar BD. 2014. Metakaryotic stem cell nuclei use pangenomic dsRNA/DNA intermediates in genome replication and segregation. Organogenesis. 10(1):44-52. doi : 10.4161/org.27684. Epub 2014 Jan 13.

Walen KH. 2004. Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures. In Vitro Cell Dev Biol Anim. 40(5-6):150-8.

Zybina EV, Zybina TG, Bogdanova MS, Stein GI 2005 Cell Biol Int. 29 (12): 1066-1070