Ancyromonas

Last updated

Ancyromonas
Ancyromonas.png
Ancyromonas sp.
Scientific classification OOjs UI icon edit-ltr.svg
Phylum: Planomonada
Class: Planomonadea
Order: Ancyromonadida
Family: Ancyromonadidae
Genus: Ancyromonas
Kent 1880
Type species
Ancyromonas sigmoides
Kent, 1880
Species

See text

Synonyms
  • PhyllomonasKlebs 1892

Ancyromonas is a genus of basal Eukaryote consisting of heterotrophic flagellates. [1]

It includes the species Ancyromonas sigmoides, [2] first described by Saville Kent in 1880. The genus was rediscovered in modern times by Hänel in 1979.

They are about 5 μm long and live in both marine and freshwater habitats with a global distribution.

In 2008, Cavalier-Smith et al. proposed the reassignment of all known species of Ancyromonas into a new genus, Planomonas. Planomonas has since been described as a junior synonym of Ancyromonas. [3] Ancyromonas does not belong to any of the eukaryotic supergroups, and they appear more basal than Malawimonas, placing them in Loukouzoa, possibly relatives of podiates, and depending on the placement of the root position of the Eukaryotes. [4] [5]

Taxonomy

Species of Ancyromonas

Related Research Articles

<span class="mw-page-title-main">Percolozoa</span> Phylum of Excavata

The Percolozoa are a group of colourless, non-photosynthetic Excavata, including many that can transform between amoeboid, flagellate, and cyst stages.

<span class="mw-page-title-main">Excavata</span> Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is an extensive and diverse but paraphyletic group of unicellular Eukaryota. The group was first suggested by Simpson and Patterson in 1999 and the name latinized and assigned a rank by Thomas Cavalier-Smith in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged. They are considered to be a basal flagellate lineage.

<span class="mw-page-title-main">Cercozoa</span> Group of single-celled organisms

Cercozoa is a phylum of diverse single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, and are instead united by molecular phylogenies of rRNA and actin or polyubiquitin. They were the first major eukaryotic group to be recognized mainly through molecular phylogenies. They are the natural predators of many species of bacteria. They are closely related to the phylum Retaria, comprising amoeboids that usually have complex shells, and together form a supergroup called Rhizaria.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Telonemia</span> Phylum of single-celled organisms

Telonemia is a phylum of microscopic eukaryotes. They are unicellular free-living flagellates with a unique combination of cell structures, including a highly complex cytoskeleton unseen in other eukaryotes. They present characteristics similar to their sister group, the SAR supergroup, such as cortical alveoli, tripartite mastigonemes and filopodia. Together, the two lineages compose the TSAR clade. They are classified in three genera and seven species, although numerous undescribed lineages are known. They are detected in all marine and freshwater environments, where they prey on bacteria and small phytoplankton through phagotrophy.

<span class="mw-page-title-main">Malawimonadidae</span> Family of protists

Malawimonadidae is a family of unicellular eukaryotes of outsize importance in understanding eukaryote phylogeny.

<i>Breviata</i> Genus of flagellated amoebae

Breviata anathema is a single-celled flagellate amoeboid eukaryote, previously studied under the name Mastigamoeba invertens. The cell lacks mitochondria, much like the pelobionts to which the species was previously assigned, but has remnant mitochondrial genes, and possesses an organelle believed to be a modified anaerobic mitochondrion, similar to the mitosomes and hydrogenosomes found in other eukaryotes that live in low-oxygen environments.

<i>Malawimonas</i> Genus of micro-organisms

Malawimonas is genus of unicellular, heterotrophic flagellates with uncertain phylogenetic affinities. They have variably being assigned to Excavata and Loukozoa. Recent studies suggest they may be closely related to the Podiata.

<span class="mw-page-title-main">Jakobid</span>

Jakobids are an order of free-living, heterotrophic, flagellar eukaryotes in the supergroup Excavata. They are small, and can be found in aerobic and anaerobic environments. The order Jakobida, believed to be monophyletic, consists of only twenty species at present, and was classified as a group in 1993. There is ongoing research into the mitochondrial genomes of jakobids, which are unusually large and bacteria-like, evidence that jakobids may be important to the evolutionary history of eukaryotes.

<span class="mw-page-title-main">Apusomonadidae</span> Group of microorganisms with two flagella

The apusomonads are a group of protozoan zooflagellates that glide on surfaces, and mostly consume prokaryotes. They are of particular evolutionary interest because they appear to be the sister group to the Opisthokonts, the clade that includes both animals and fungi. Together with the Breviatea, these form the Obazoa clade.

<span class="mw-page-title-main">Ancyromonadida</span> Group of protists

Ancyromonadida or Planomonadida is a small group of biflagellated protists found in the soil and in aquatic habitats, where they feed on bacteria. Includes freshwater or marine organisms, benthic, dorsoventrally compressed and with two unequal flagellae, each emerging from a separate pocket. The apical anterior flagellum can be very thin or end in the cell membrane, while the posterior flagellum is long and is inserted ventrally or laterally. The cell membrane is supported by a thin single-layered theca and the mitochondrial crests are discoidal/flat.

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

<span class="mw-page-title-main">Collodictyon</span> Genus of algae

Collodictyon is a genus of single-celled, omnivorous eukaryotes belonging to the collodictyonids, also known as diphylleids. Due to their mix of cellular components, Collodictyonids do not belong to any well-known kingdom-level grouping of that domain and this makes them distinctive from other families. Recent research places them in a new 'supergroup' together with rigifilids and Mantamonas, with the so-far informal name 'CRuMs'.

<span class="mw-page-title-main">Collodictyonidae</span> Family of aquatic microorganisms

Collodictyonidae is a group of aquatic, unicellular eukaryotic organisms with two to four terminal flagella. They feed by phagocytosis, ingesting other unicellular organisms like algae and bacteria. The most remarkable fact of this clade is its uncertain position in the tree of life.

<span class="mw-page-title-main">Varisulca</span> Proposed phylum of protists

Varisulca was a proposed basal Podiate taxon. It encompassed several lineages of heterotrophic protists, most notably the ancyromonads (planomonads), collodictyonids (diphylleids), rigifilids and mantamonadids. Recent evidence suggests that the latter three are closely related to each other, forming a clade called CRuMs, but that this is unlikely to be specifically related to ancyromonads

<span class="mw-page-title-main">Obazoa</span> Proposed group of single-celled organisms

Obazoa is a proposed sister clade of Amoebozoa. The term Obazoa is based on the OBA acronym for Opisthokonta, Breviatea, and Apusomonadida, the group's three constituent clades.

Mantamonads are a group of free-living heterotrophic flagellates that move primarily by gliding on surfaces. They are classified as one genus Mantamonas in the monotypic family Mantamonadidae, order Mantamonadida and class Glissodiscea. Previously, they were classified in Apusozoa as sister of the Apusmonadida on the basis of rRNA analyses. However, mantamonads are currently placed in CRuMs on the basis of phylogenomic analyses that identify their closest relatives as the Diphylleida and Rigifilida.

Mantamonas sphyraenae is a species of marine heterotrophic flagellates described in 2021. It belongs to the Mantamonadida, a basal eukaryotic lineage within a clade known as CRuMs. Its diploid genome is the first to be assembled within the CRuMs group.

Mantamonas vickermani is a species of marine heterotrophic flagellates described in 2021. It belongs to the Mantamonadida, a basal eukaryotic lineage within a clade known as CRuMs.

Mantamonas plastica is a species of marine heterotrophic biflagellates described in 2011. It is the type species of the Mantamonadida, a basal eukaryotic lineage within a clade known as CRuMs.

References

  1. Scheckenbach F, Wylezich C, Mylnikov AP, Weitere M, Arndt H (October 2006). "Molecular Comparisons of Freshwater and Marine Isolates of the Same Morphospecies of Heterotrophic Flagellates". Appl. Environ. Microbiol. 72 (10): 6638–43. doi:10.1128/AEM.02547-05. PMC   1610283 . PMID   17021215.
  2. Cavalier-Smith T, Chao EE, Stechmann A, Oates B, Nikolaev S (October 2008). "Planomonadida ord. nov. (Apusozoa): ultrastructural affinity with Micronuclearia podoventralis and deep divergences within Planomonas gen. nov". Protist. 159 (4): 535–62. doi:10.1016/j.protis.2008.06.002. PMID   18723395.
  3. Heiss AA, Walker G, Simpson AG (May 2010). "Clarifying the taxonomic identity of a phylogenetically important group of eukaryotes: Planomonas is a junior synonym of Ancyromonas". J. Eukaryot. Microbiol. 57 (3): 285–93. doi:10.1111/j.1550-7408.2010.00477.x. PMID   20384907.
  4. Brown, Matthew W.; Heiss, Aaron; Kamikawa, Ryoma; Inagaki, Yuji; Yabuki, Akinori; Tice, Alexander K.; Shiratori, Takashi; Ishida, Ken; Hashimoto, Tetsuo (2017-12-03). "Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group". Genome Biol Evol. 10. doi:10.1093/gbe/evy014. PMC   5793813 . PMID   29360967.
  5. Torruella, Guifré; Mendoza, Alex de; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; Campo, Javier del; Eme, Laura; Pérez-Cordón, Gregorio; Whipps, Christopher M. (2015). "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology. 25 (18): 2404–2410. doi: 10.1016/j.cub.2015.07.053 . PMID   26365255.