Andrea Russell

Last updated
Andrea Russell
Alma mater University of Michigan
University of Utah
Scientific career
Institutions Newcastle University
University of Liverpool
United States Naval Research Laboratory
University of Southampton
Thesis Infrared spectroscopic studies of electrode surfaces and electrochemical reactions  (1990)

Andrea Russell FRSC FHEA is an American chemist who is a professor at the University of Southampton. She is vice president of the International Society of Electrochemistry. Her research considers the use of spectroscopy to better understand the interface between electrodes and electrolytes.

Contents

Early life and education

Russell was an undergraduate student at the University of Michigan. [1] She moved to the University of Utah for graduate studies, where she used infrared spectroscopy to examine electrode surfaces. [2] After completing her doctorate, Russell was appointed as a research fellow at the United States Naval Research Laboratory.[ citation needed ]. Andrea’s mother, “Judy”, breeds Siberian huskies and has done so since 1959 at Karnovanda kennels in Michigan.

Research and career

In 1991, Russell moved to the United Kingdom, where she was appointed to the University of Liverpool. She spent three years in Liverpool before joining Newcastle University. In 1997 Russell moved to the University of Southampton. She was promoted to professor in 2007. [3]

Russell's research considers the use of spectroscopy to better understand the interface between electrodes and electrolytes. [4] She is particularly interested in gas sensors, metal-air batteries and fuel cells. [5] [6] She makes use of several international facilities, including the Diamond Light Source, ISIS Neutron and Muon Source and the Advanced Light Source. [1] In particular, Russell has developed X-ray absorption spectroscopy for in situ studies of electrocatalysts.[ citation needed ]

In 2002, Russell chaired the Gordon Research Conference on Fuel Cells. [7] Russell serves on the Engineering and Physical Sciences Research Council (EPSRC) College and the Diamond Light Source Strategic Advisory Committee. A keen user of the Diamond Light Source, Russell serves as Spectroscopy representative for the Diamond User Committee. [8] In 2021 she was elected vice president of the International Society of Electrochemistry. [5]

Russell is involved with undergraduate and postgraduate teaching at the University of Southampton. She contributes to the Southampton Electrochemistry Summer Schools, which are attended by hundreds of delegates around the world. [5] She was awarded the Faculty of Engineering and Physical Sciences Award for Best Pastoral Support in 2020. [9]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Voltaic pile</span> First electrical battery that could continuously provide an electric current to a circuit

The voltaic pile was the first electrical battery that could continuously provide an electric current to a circuit. It was invented by Italian chemist Alessandro Volta, who published his experiments in 1799. Its invention can be traced back to an argument between Volta and Luigi Galvani, Volta’s fellow Italian scientist who had conducted experiments on frogs' legs. The voltaic pile then enabled a rapid series of other discoveries including the electrical decomposition (electrolysis) of water into oxygen and hydrogen by William Nicholson and Anthony Carlisle (1800) and the discovery or isolation of the chemical elements sodium (1807), potassium (1807), calcium (1808), boron (1808), barium (1808), strontium (1808), and magnesium (1808) by Humphry Davy.

<span class="mw-page-title-main">Lemon battery</span> Simple battery made with a lemon for educational purposes

A lemon battery is a simple battery often made for the purpose of education. Typically, a piece of zinc metal and a piece of copper are inserted into a lemon and connected by wires. Power generated by reaction of the metals is used to power a small device such as a light-emitting diode (LED).

<span class="mw-page-title-main">Cyclic voltammetry</span> Method of analyzing electrochemical reactions

In electrochemistry, cyclic voltammetry (CV) is a type of potentiodynamic measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is reached in a CV experiment, the working electrode's potential is ramped in the opposite direction to return to the initial potential. These cycles of ramps in potential may be repeated as many times as needed. The current at the working electrode is plotted versus the applied voltage to give the cyclic voltammogram trace. Cyclic voltammetry is generally used to study the electrochemical properties of an analyte in solution or of a molecule that is adsorbed onto the electrode.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

Genoa Joint Laboratories (GJL) is a scientific research activity founded in 2002, combining expertise in electroceramics and electrochemistry of three facilities: National Research Council - Institute for Energetics and Interphases (CNR-IENI), Department of Chemical and Process Engineering with University of Genova (DICHeP), and the Department of Chemistry and Industrial Chemistry with University of Genova (DCCI), all located in Genoa, Italy.

Electrochemical engineering is the branch of chemical engineering dealing with the technological applications of electrochemical phenomena, such as electrosynthesis of chemicals, electrowinning and refining of metals, flow batteries and fuel cells, surface modification by electrodeposition, electrochemical separations and corrosion.

Photoelectrochemistry is a subfield of study within physical chemistry concerned with the interaction of light with electrochemical systems. It is an active domain of investigation. One of the pioneers of this field of electrochemistry was the German electrochemist Heinz Gerischer. The interest in this domain is high in the context of development of renewable energy conversion and storage technology.

Andrzej Wieckowski American chemistry professor (1945–2019)

Andrzej Wieckowski was an Emeritus Professor of Chemistry at the University of Illinois at Urbana–Champaign and the North American Editor of Electrochimica Acta. He is known for his spectroscopic investigations of electrocatalysis in fuel cells and co-inventing of the direct formic acid fuel cell (DFAFC). He authored more than 300 publications, has been cited over 13,000 times and has an h-index 60. He was appointed fellow of the Electrochemical Society in 2007 and fellow of the International Society of Electrochemistry in 2009. He was awarded the US Department of Energy Prize for outstanding Scientific Accomplishment in Materials Chemistry in 1992, the ISE Jacques Tacussel Prize in 1998, the ECS David. C. Graham Award in 2003, and the ISE Gold Medal in 2007.

In electrochemistry, faradaic impedance is the resistance and capacitance acting jointly at the surface of an electrode of an electrochemical cell. The cell may be operating as either a galvanic cell generating an electric current or inversely as an electrolytic cell using an electric current to drive a chemical reaction. In the simplest nontrivial case faradaic impedance is modeled as a single resistor and single capacitor connected in parallel, as opposed say to in series or as a transmission line with multiple resistors and capacitors.

Yang Shao-Horn is a Chinese American scholar, Professor of Mechanical Engineering and Materials Science and Engineering and a member of Research Laboratory of Electronics at the Massachusetts Institute of Technology. She is known for research on understanding and controlling of processes for storing electrons in chemical bonds towards zero-carbon energy and chemicals.

Julie Macpherson is a professor of chemistry at the University of Warwick. In 2017 she was awarded the Royal Society Innovation award for her research into boron doped diamond electrochemical sensors.

Linda Faye Nazar is a Senior Canada Research Chair in Solid State Materials and Distinguished Research Professor of Chemistry at the University of Waterloo. She develops materials for electrochemical energy storage and conversion. Nazar demonstrated that interwoven composites could be used to improve the energy density of lithium–sulphur batteries. She was awarded the 2019 Chemical Institute of Canada Medal.

Shelley D. Minteer is an American academic and chemistry professor at the University of Utah. Minteer field of study focuses on the interface between biocatalysts and enzyme-based electrodes for biofuel cells and sensors.

<span class="mw-page-title-main">Kristina Edström</span> Swedish inorganic chemist

Kristina Edström is a Swedish Professor of Inorganic Chemistry at Uppsala University. She also serves as Head of the Ångström Advanced Battery Centre (ÅABC) and has previously been both Vice Dean for Research at the Faculty of Science and Technology and Chair of the STandUp for Energy research programme.

<span class="mw-page-title-main">Jennifer Rupp</span> German-American professor

Jennifer L. M. Rupp FRSC is a material scientist and professor at the Technical University of Munich, visiting professor at the Massachusetts Institute of Technology and the CTO for battery research at TUM International Energy Research. Rupp has published more than 115 papers in peer reviewed journals, co-authored 7 book chapters and holds more than 25 patents. Rupp research broadly encompasses solid state materials and cell designs for sustainable batteries, energy conversion and neuromorphic memory and computing.

Héctor Daniel Abruña is a Puerto Rican physical chemist whose work focuses on electrochemistry, molecular electronics, fuel cells, batteries, and electrocatalysis. Abruña is director of the Energy Materials Center and Emile M. Chamot professor for chemistry at Cornell University. He became a Fellow of the American Association for the Advancement of Science in 2006, a Member of the American Academy of Arts and Sciences in 2007, and a Member of the National Academy of Sciences in 2018. Abruña conducts research into battery and fuel cell systems using electrochemical techniques and X-ray microscopy and spectroscopy methods.

Ultraviolet-visible (UV-Vis) absorption spectroelectrochemistry (SEC) is a multiresponse technique that analyzes the evolution of the absorption spectra in UV-Vis regions during an electrode process. This technique provides information from an electrochemical and spectroscopic point of view. In this way, it enables a better perception about the chemical system of interest. On one hand, molecular information related to the electronic levels of the molecules is obtained from the evolution of the spectra. On the other hand, kinetic and thermodynamic information of the processes is obtained from the electrochemical signal.

Janet Gretchen Osteryoung was an American chemist who was the director of the Chemistry Division of the National Science Foundation from 1994 to 2001. Her research furthered the development of electroanalysis and especially that of square wave voltammetry. She was elected a Fellow of the American Association for the Advancement of Science in 1984 and awarded the Garvan–Olin Medal in 1987.

Elod L. Gyenge is a professor of Chemical and Biological Engineering at the faculty of Applied Science in University of British Columbia in Vancouver, BC, Canada. He is also an associate member of the Clean Energy Research Center of UBC Vancouver campus. Elod Gyenge has been nominated for several teaching and research awards including Japanese Society for Promotion of Science (JSPS) Fellowship at Osaka University and the recipient of the distignshuied Elisabeth and Leslie Gould Endowed Professorship at UBC from 2007 to 2014. His research has been toward development of electrochemical systems such as fuel cells, batteries and electrosynthesis systems. He is also an appointed professor in the engineering school of Osaka University in Japan.

References