Antitoxin

Last updated
A vintage 1895 vial of diphtheria antitoxin. Antitoxin diphtheria.jpg
A vintage 1895 vial of diphtheria antitoxin.

An antitoxin is an antibody with the ability to neutralize a specific toxin. Antitoxins are produced by certain animals, plants, and bacteria in response to toxin exposure. Although they are most effective in neutralizing toxins, they can also kill bacteria and other microorganisms. Antitoxins are made within organisms, and can be injected into other organisms, including humans, to treat an infectious disease. This procedure involves injecting an animal with a safe amount of a particular toxin. The animal's body then makes the antitoxin needed to neutralize the toxin. Later, blood is withdrawn from the animal. When the antitoxin is obtained from the blood, it is purified and injected into a human or other animal, inducing temporary passive immunity. To prevent serum sickness, it is often best to use an antitoxin obtained from the same species (e.g. use human antitoxin to treat humans).

Contents

Most antitoxin preparations are prepared from donors with high titers of antibody against the toxin, making them hyperimmune globulins.

History of antitoxin

Antitoxins to diphtheria and tetanus toxins were produced by Emil Adolf von Behring and his colleagues from 1890 onwards. The use of diphtheria antitoxin for the treatment of diphtheria was regarded by The Lancet as the "most important advance of the [19th] Century in the medical treatment of acute infectious disease". [1] [2]

In 1888, Behring was sent to Berlin for a brief service at the Academy for Military Medicine. In 1889, he joined the Institute for Hygiene of the University of Berlin, then headed by Robert Koch. Between 1889 and 1895, Behring developed his pioneering ideas on serum therapy and his theory of antitoxins. [3]

Early 1887, in Bonn, Behring had found that the serum of tetanus-immune white rats contained a substance that neutralized anthrax bacilli. He recognized this as the source of their "resistance". [3] On 4 December 1890, Behring and Kitasato Shibasaburō published their first paper on blood-serum therapy. [3] On 11 December, another report, signed by Behring, discussed blood-serum therapy not only in the treatment of tetanus, but also in diphtheria.[ citation needed ]

When Paul Ehrlich demonstrated in 1891 that even vegetable poisons led to the formation of antitoxins in an organism, Behring's theory was confirmed. [3]

An antitoxin for scarlet fever was developed in 1924, simultaneously by Raymond Dochez and Gladys and George Frederick Dick. [4] [5]

21st-century serum therapy

See also

Related Research Articles

<span class="mw-page-title-main">Paul Ehrlich</span> German physician and scientist (1854–1915)

Paul Ehrlich was a Nobel Prize-winning German physician and scientist who worked in the fields of hematology, immunology, and antimicrobial chemotherapy. Among his foremost achievements were finding a cure for syphilis in 1909 and inventing the precursor technique to Gram staining bacteria. The methods he developed for staining tissue made it possible to distinguish between different types of blood cells, which led to the ability to diagnose numerous blood diseases.

<span class="mw-page-title-main">Tetanus</span> Bacterial infection characterized by muscle spasms

Tetanus, also known as lockjaw, is a bacterial infection caused by Clostridium tetani and characterized by muscle spasms. In the most common type, the spasms begin in the jaw, and then progress to the rest of the body. Each spasm usually lasts for a few minutes. Spasms occur frequently for three to four weeks. Some spasms may be severe enough to fracture bones. Other symptoms of tetanus may include fever, sweating, headache, trouble swallowing, high blood pressure, and a fast heart rate. Onset of symptoms is typically 3 to 21 days following infection. Recovery may take months; about 10% of cases prove to be fatal.

<span class="mw-page-title-main">Emil von Behring</span> German physiologist (1854–1917)

Emil von Behring, born Emil Adolf Behring, was a German physiologist who received the 1901 Nobel Prize in Physiology or Medicine, the first one awarded in that field, for his discovery of a diphtheria antitoxin. He was widely known as a "saviour of children", as diphtheria used to be a major cause of child death. His work with the disease, as well as tetanus, has come to bring him most of his fame and acknowledgment. He was honoured with Prussian nobility in 1901, henceforth being known by the surname "von Behring."

<span class="mw-page-title-main">Diphtheria</span> Bacterial disease

Diphtheria is an infection caused by the bacterium Corynebacterium diphtheriae. Most infections are asymptomatic or have a mild clinical course, but in some outbreaks, the mortality rate approaches 10%. Signs and symptoms may vary from mild to severe, and usually start two to five days after exposure. Symptoms often develop gradually, beginning with a sore throat and fever. In severe cases, a grey or white patch develops in the throat, which can block the airway, and create a barking cough similar to what is observed in croup. The neck may also swell in part due to the enlargement of the facial lymph nodes. Diphtheria can also involve the skin, eyes, or genitals, and can cause complications, including myocarditis, inflammation of nerves, kidney problems, and bleeding problems due to low levels of platelets.

In biology, immunity is the state of being insusceptible or resistant to a noxious agent or process, especially a pathogen or infectious disease. Immunity may occur naturally or be produced by prior exposure or immunization.

Humoral immunity is the aspect of immunity that is mediated by macromolecules – including secreted antibodies, complement proteins, and certain antimicrobial peptides – located in extracellular fluids. Humoral immunity is named so because it involves substances found in the humors, or body fluids. It contrasts with cell-mediated immunity. Humoral immunity is also referred to as antibody-mediated immunity.

<span class="mw-page-title-main">Exotoxin</span> Toxin from bacteria that destroys or disrupts cells

An exotoxin is a toxin secreted by bacteria. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, similar to endotoxins, may be released during lysis of the cell. Gram negative pathogens may secrete outer membrane vesicles containing lipopolysaccharide endotoxin and some virulence proteins in the bounding membrane along with some other toxins as intra-vesicular contents, thus adding a previously unforeseen dimension to the well-known eukaryote process of membrane vesicle trafficking, which is quite active at the host–pathogen interface.

<span class="mw-page-title-main">Émile Roux</span> French physician (1853–1933)

Pierre Paul Émile Roux FRS was a French physician, bacteriologist and immunologist. Roux was one of the closest collaborators of Louis Pasteur (1822–1895), a co-founder of the Pasteur Institute, and responsible for the institute's production of the anti-diphtheria serum, the first effective therapy for this disease. Additionally, he investigated cholera, chicken-cholera, rabies, and tuberculosis. Roux is regarded as a founder of the field of immunology.

In immunology, antiserum is a blood serum containing antibodies that is used to spread passive immunity to many diseases via blood donation (plasmapheresis). For example, convalescent serum, passive antibody transfusion from a previous human survivor, used to be the only known effective treatment for ebola infection with a high success rate of 7 out of 8 patients surviving.

<span class="mw-page-title-main">Toxoid</span>

A toxoid is an inactivated toxin whose toxicity has been suppressed either by chemical (formalin) or heat treatment, while other properties, typically immunogenicity, are maintained. Toxins are secreted by bacteria, whereas toxoids are altered form of toxins; toxoids are not secreted by bacteria. Thus, when used during vaccination, an immune response is mounted and immunological memory is formed against the molecular markers of the toxoid without resulting in toxin-induced illness. Such a preparation is also known as an anatoxin. There are toxoids for prevention of diphtheria, tetanus and botulism.

Artificial induction of immunity is immunization achieved by human efforts in preventive healthcare, as opposed to natural immunity as produced by organisms' immune systems. It makes people immune to specific diseases by means other than waiting for them to catch the disease. The purpose is to reduce the risk of death and suffering, that is, the disease burden, even when eradication of the disease is not possible. Vaccination is the chief type of such immunization, greatly reducing the burden of vaccine-preventable diseases.

<span class="mw-page-title-main">Diphtheria antitoxin</span> Treatment for diphtheria

Diphtheria antitoxin (DAT) is a medication made up of antibodies used in the treatment of diphtheria. It is no longer recommended for prevention of diphtheria. It is administered through injection into a vein or muscle.

In immunology, passive immunity is the transfer of active humoral immunity of ready-made antibodies. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta, and it can also be induced artificially, when high levels of antibodies specific to a pathogen or toxin are transferred to non-immune persons through blood products that contain antibodies, such as in immunoglobulin therapy or antiserum therapy. Passive immunization is used when there is a high risk of infection and insufficient time for the body to develop its own immune response, or to reduce the symptoms of ongoing or immunosuppressive diseases. Passive immunization can be provided when people cannot synthesize antibodies, and when they have been exposed to a disease that they do not have immunity against.

<i>Clostridium tetani</i> Common soil bacterium and the causative agent of tetanus

Clostridium tetani is a common soil bacterium and the causative agent of tetanus. Vegetative cells of Clostridium tetani are usually rod-shaped and up to 2.5 μm long, but they become enlarged and tennis racket- or drumstick-shaped when forming spores. C. tetani spores are extremely hardy and can be found globally in soil or in the gastrointestinal tract of animals. If inoculated into a wound, C. tetani can grow and produce a potent toxin, tetanospasmin, which interferes with motor neurons, causing tetanus. The toxin's action can be prevented with tetanus toxoid vaccines, which are often administered to children worldwide.

<span class="mw-page-title-main">Diphtheria vaccine</span> Vaccine against diphtheria

Diphtheria vaccine is a toxoid vaccine against diphtheria, an illness caused by Corynebacterium diphtheriae. Its use has resulted in a more than 90% decrease in number of cases globally between 1980 and 2000. The first dose is recommended at six weeks of age with two additional doses four weeks apart, after which it is about 95% effective during childhood. Three further doses are recommended during childhood. It is unclear if further doses later in life are needed.

<span class="mw-page-title-main">Kitasato Shibasaburō</span> Japanese physician and bacteriologist

Baron Kitasato Shibasaburō was a Japanese physician and bacteriologist. He is remembered as the co-discoverer of the infectious agent of bubonic plague in Hong Kong during an outbreak in 1894, almost simultaneously with Alexandre Yersin.

A neutralizing antibody (NAb) is an antibody that defends a cell from a pathogen or infectious particle by neutralizing any effect it has biologically. Neutralization renders the particle no longer infectious or pathogenic. Neutralizing antibodies are part of the humoral response of the adaptive immune system against viruses, intracellular bacteria and microbial toxin. By binding specifically to surface structures (antigen) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its host cells it might infect and destroy.

<span class="mw-page-title-main">Department of Medical Microbiology (Schering AG)</span> Medical research department in Germany (1893–2006)

The Department of Medical Microbiology, formerly known as the Department of Bacteriology or the Institute of Bacteriology, was a research department of the pharmaceutical company Schering AG.

Passive antibody therapy, also called serum therapy, is a subtype of passive immunotherapy that administers antibodies to target and kill pathogens or cancer cells. It is designed to draw support from foreign antibodies that are donated from a person, extracted from animals, or made in the laboratory to elicit an immune response instead of relying on the innate immune system to fight disease. It has a long history from the 18th century for treating infectious diseases and is now a common cancer treatment. The mechanism of actions include: antagonistic and agonistic reaction, complement-dependent cytotoxicity (CDC), and antibody-dependent cellular cytotoxicity (ADCC).

Oligoclonal antibodies are an emerging immunological treatment relying on the combinatory use of several monoclonal antibodies (mAb) in one single drug. The composition can be made of mAb targeting different epitopes of a same protein (homo-combination) or mAb targeting different proteins (hetero-combination). It mimicks the natural polyclonal humoral immunological response to get better efficiency of the treatment. This strategy is most efficient in infections and in cancer treatment as it allow to overcome acquired resistance by pathogens and the plasticity of cancers.

References

  1. "Report of the Lancet special commission on the relative strengths of diphtheria antitoxic antiserums". Lancet. 148 (3803): 182–95. 1896. doi:10.1016/s0140-6736(01)72399-9. PMC   5050965 .
  2. Dolman, C.E. (1973). "Landmarks and pioneers in the control of diphtheria". Canadian Journal of Public Health. 64 (4): 317–336. PMID   4581249.
  3. 1 2 3 4 "Emil von Behring Facts, information, pictures". www.encyclopedia.com. Retrieved 17 May 2016.
  4. Cushing, H.B. (August 1926). "Results of the use of scarlet fever antitoxin". Canadian Medical Association Journal. 16 (8): 936–939. PMC   1709338 . PMID   20315893.
  5. Zingher, Abraham (November 1924). "The Dick test and active immunization with scarlet fever Streptococcus toxin". American Journal of Public Health. 14 (11): 955–962. doi:10.2105/AJPH.14.11.955. PMC   1355058 . PMID   18011363.